1521 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1521 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b15 = -.125;
 | |
| static integer c__1 = 1;
 | |
| static real c_b49 = 1.f;
 | |
| static real c_b72 = -1.f;
 | |
| 
 | |
| /* > \brief \b SBDSQR */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SBDSQR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsqr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsqr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsqr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
 | |
| /*                          LDU, C, LDC, WORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
 | |
| /*       REAL               C( LDC, * ), D( * ), E( * ), U( LDU, * ), */
 | |
| /*      $                   VT( LDVT, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SBDSQR computes the singular values and, optionally, the right and/or */
 | |
| /* > left singular vectors from the singular value decomposition (SVD) of */
 | |
| /* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
 | |
| /* > zero-shift QR algorithm.  The SVD of B has the form */
 | |
| /* > */
 | |
| /* >    B = Q * S * P**T */
 | |
| /* > */
 | |
| /* > where S is the diagonal matrix of singular values, Q is an orthogonal */
 | |
| /* > matrix of left singular vectors, and P is an orthogonal matrix of */
 | |
| /* > right singular vectors.  If left singular vectors are requested, this */
 | |
| /* > subroutine actually returns U*Q instead of Q, and, if right singular */
 | |
| /* > vectors are requested, this subroutine returns P**T*VT instead of */
 | |
| /* > P**T, for given real input matrices U and VT.  When U and VT are the */
 | |
| /* > orthogonal matrices that reduce a general matrix A to bidiagonal */
 | |
| /* > form:  A = U*B*VT, as computed by SGEBRD, then */
 | |
| /* > */
 | |
| /* >    A = (U*Q) * S * (P**T*VT) */
 | |
| /* > */
 | |
| /* > is the SVD of A.  Optionally, the subroutine may also compute Q**T*C */
 | |
| /* > for a given real input matrix C. */
 | |
| /* > */
 | |
| /* > See "Computing  Small Singular Values of Bidiagonal Matrices With */
 | |
| /* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
 | |
| /* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
 | |
| /* > no. 5, pp. 873-912, Sept 1990) and */
 | |
| /* > "Accurate singular values and differential qd algorithms," by */
 | |
| /* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
 | |
| /* > Department, University of California at Berkeley, July 1992 */
 | |
| /* > for a detailed description of the algorithm. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  B is upper bidiagonal; */
 | |
| /* >          = 'L':  B is lower bidiagonal. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix B.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NCVT */
 | |
| /* > \verbatim */
 | |
| /* >          NCVT is INTEGER */
 | |
| /* >          The number of columns of the matrix VT. NCVT >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRU */
 | |
| /* > \verbatim */
 | |
| /* >          NRU is INTEGER */
 | |
| /* >          The number of rows of the matrix U. NRU >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NCC */
 | |
| /* > \verbatim */
 | |
| /* >          NCC is INTEGER */
 | |
| /* >          The number of columns of the matrix C. NCC >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >          On entry, the n diagonal elements of the bidiagonal matrix B. */
 | |
| /* >          On exit, if INFO=0, the singular values of B in decreasing */
 | |
| /* >          order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (N-1) */
 | |
| /* >          On entry, the N-1 offdiagonal elements of the bidiagonal */
 | |
| /* >          matrix B. */
 | |
| /* >          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
 | |
| /* >          will contain the diagonal and superdiagonal elements of a */
 | |
| /* >          bidiagonal matrix orthogonally equivalent to the one given */
 | |
| /* >          as input. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is REAL array, dimension (LDVT, NCVT) */
 | |
| /* >          On entry, an N-by-NCVT matrix VT. */
 | |
| /* >          On exit, VT is overwritten by P**T * VT. */
 | |
| /* >          Not referenced if NCVT = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >          The leading dimension of the array VT. */
 | |
| /* >          LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension (LDU, N) */
 | |
| /* >          On entry, an NRU-by-N matrix U. */
 | |
| /* >          On exit, U is overwritten by U * Q. */
 | |
| /* >          Not referenced if NRU = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U.  LDU >= f2cmax(1,NRU). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension (LDC, NCC) */
 | |
| /* >          On entry, an N-by-NCC matrix C. */
 | |
| /* >          On exit, C is overwritten by Q**T * C. */
 | |
| /* >          Not referenced if NCC = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. */
 | |
| /* >          LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (4*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  If INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0: */
 | |
| /* >             if NCVT = NRU = NCC = 0, */
 | |
| /* >                = 1, a split was marked by a positive value in E */
 | |
| /* >                = 2, current block of Z not diagonalized after 30*N */
 | |
| /* >                     iterations (in inner while loop) */
 | |
| /* >                = 3, termination criterion of outer while loop not met */
 | |
| /* >                     (program created more than N unreduced blocks) */
 | |
| /* >             else NCVT = NRU = NCC = 0, */
 | |
| /* >                   the algorithm did not converge; D and E contain the */
 | |
| /* >                   elements of a bidiagonal matrix which is orthogonally */
 | |
| /* >                   similar to the input matrix B;  if INFO = i, i */
 | |
| /* >                   elements of E have not converged to zero. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Internal Parameters: */
 | |
| /*  ========================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  TOLMUL  REAL, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
 | |
| /* >          TOLMUL controls the convergence criterion of the QR loop. */
 | |
| /* >          If it is positive, TOLMUL*EPS is the desired relative */
 | |
| /* >             precision in the computed singular values. */
 | |
| /* >          If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
 | |
| /* >             desired absolute accuracy in the computed singular */
 | |
| /* >             values (corresponds to relative accuracy */
 | |
| /* >             abs(TOLMUL*EPS) in the largest singular value. */
 | |
| /* >          abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
 | |
| /* >             between 10 (for fast convergence) and .1/EPS */
 | |
| /* >             (for there to be some accuracy in the results). */
 | |
| /* >          Default is to lose at either one eighth or 2 of the */
 | |
| /* >             available decimal digits in each computed singular value */
 | |
| /* >             (whichever is smaller). */
 | |
| /* > */
 | |
| /* >  MAXITR  INTEGER, default = 6 */
 | |
| /* >          MAXITR controls the maximum number of passes of the */
 | |
| /* >          algorithm through its inner loop. The algorithms stops */
 | |
| /* >          (and so fails to converge) if the number of passes */
 | |
| /* >          through the inner loop exceeds MAXITR*N**2. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Note: */
 | |
| /*  =========== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  Bug report from Cezary Dendek. */
 | |
| /* >  On March 23rd 2017, the INTEGER variable MAXIT = MAXITR*N**2 is */
 | |
| /* >  removed since it can overflow pretty easily (for N larger or equal */
 | |
| /* >  than 18,919). We instead use MAXITDIVN = MAXITR*N. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
 | |
| 	nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real *
 | |
| 	u, integer *ldu, real *c__, integer *ldc, real *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
 | |
| 	    i__2;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
|     doublereal d__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real abse;
 | |
|     integer idir;
 | |
|     real abss;
 | |
|     integer oldm;
 | |
|     real cosl;
 | |
|     integer isub, iter;
 | |
|     real unfl, sinl, cosr, smin, smax, sinr;
 | |
|     extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *);
 | |
|     integer iterdivn;
 | |
|     extern /* Subroutine */ void slas2_(real *, real *, real *, real *, real *)
 | |
| 	    ;
 | |
|     real f, g, h__;
 | |
|     integer i__, j, m;
 | |
|     real r__;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     real oldcs;
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     integer oldll;
 | |
|     real shift, sigmn, oldsn, sminl;
 | |
|     extern /* Subroutine */ void slasr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     real sigmx;
 | |
|     logical lower;
 | |
|     extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer maxitdivn;
 | |
|     extern /* Subroutine */ void slasq1_(integer *, real *, real *, real *, 
 | |
| 	    integer *), slasv2_(real *, real *, real *, real *, real *, real *
 | |
| 	    , real *, real *, real *);
 | |
|     real cs;
 | |
|     integer ll;
 | |
|     real sn, mu;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     real sminoa;
 | |
|     extern /* Subroutine */ void slartg_(real *, real *, real *, real *, real *
 | |
| 	    );
 | |
|     real thresh;
 | |
|     logical rotate;
 | |
|     integer nm1;
 | |
|     real tolmul;
 | |
|     integer nm12, nm13, lll;
 | |
|     real eps, sll, tol;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --e;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     lower = lsame_(uplo, "L");
 | |
|     if (! lsame_(uplo, "U") && ! lower) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*ncvt < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*nru < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ncc < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldu < f2cmax(1,*nru)) {
 | |
| 	*info = -11;
 | |
|     } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
 | |
| 	*info = -13;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SBDSQR", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
|     if (*n == 1) {
 | |
| 	goto L160;
 | |
|     }
 | |
| 
 | |
| /*     ROTATE is true if any singular vectors desired, false otherwise */
 | |
| 
 | |
|     rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
 | |
| 
 | |
| /*     If no singular vectors desired, use qd algorithm */
 | |
| 
 | |
|     if (! rotate) {
 | |
| 	slasq1_(n, &d__[1], &e[1], &work[1], info);
 | |
| 
 | |
| /*     If INFO equals 2, dqds didn't finish, try to finish */
 | |
| 
 | |
| 	if (*info != 2) {
 | |
| 	    return;
 | |
| 	}
 | |
| 	*info = 0;
 | |
|     }
 | |
| 
 | |
|     nm1 = *n - 1;
 | |
|     nm12 = nm1 + nm1;
 | |
|     nm13 = nm12 + nm1;
 | |
|     idir = 0;
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("Epsilon");
 | |
|     unfl = slamch_("Safe minimum");
 | |
| 
 | |
| /*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
 | |
| /*     by applying Givens rotations on the left */
 | |
| 
 | |
|     if (lower) {
 | |
| 	i__1 = *n - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 | |
| 	    d__[i__] = r__;
 | |
| 	    e[i__] = sn * d__[i__ + 1];
 | |
| 	    d__[i__ + 1] = cs * d__[i__ + 1];
 | |
| 	    work[i__] = cs;
 | |
| 	    work[nm1 + i__] = sn;
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| /*        Update singular vectors if desired */
 | |
| 
 | |
| 	if (*nru > 0) {
 | |
| 	    slasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset], 
 | |
| 		    ldu);
 | |
| 	}
 | |
| 	if (*ncc > 0) {
 | |
| 	    slasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
 | |
| 		     ldc);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute singular values to relative accuracy TOL */
 | |
| /*     (By setting TOL to be negative, algorithm will compute */
 | |
| /*     singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
 | |
| 
 | |
| /* Computing MAX */
 | |
| /* Computing MIN */
 | |
|     d__1 = (doublereal) eps;
 | |
|     r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
 | |
|     r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
 | |
|     tolmul = f2cmax(r__1,r__2);
 | |
|     tol = tolmul * eps;
 | |
| 
 | |
| /*     Compute approximate maximum, minimum singular values */
 | |
| 
 | |
|     smax = 0.f;
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	r__2 = smax, r__3 = (r__1 = d__[i__], abs(r__1));
 | |
| 	smax = f2cmax(r__2,r__3);
 | |
| /* L20: */
 | |
|     }
 | |
|     i__1 = *n - 1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	r__2 = smax, r__3 = (r__1 = e[i__], abs(r__1));
 | |
| 	smax = f2cmax(r__2,r__3);
 | |
| /* L30: */
 | |
|     }
 | |
|     sminl = 0.f;
 | |
|     if (tol >= 0.f) {
 | |
| 
 | |
| /*        Relative accuracy desired */
 | |
| 
 | |
| 	sminoa = abs(d__[1]);
 | |
| 	if (sminoa == 0.f) {
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 	mu = sminoa;
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	    mu = (r__2 = d__[i__], abs(r__2)) * (mu / (mu + (r__1 = e[i__ - 1]
 | |
| 		    , abs(r__1))));
 | |
| 	    sminoa = f2cmin(sminoa,mu);
 | |
| 	    if (sminoa == 0.f) {
 | |
| 		goto L50;
 | |
| 	    }
 | |
| /* L40: */
 | |
| 	}
 | |
| L50:
 | |
| 	sminoa /= sqrt((real) (*n));
 | |
| /* Computing MAX */
 | |
| 	r__1 = tol * sminoa, r__2 = *n * (*n * unfl) * 6;
 | |
| 	thresh = f2cmax(r__1,r__2);
 | |
|     } else {
 | |
| 
 | |
| /*        Absolute accuracy desired */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	r__1 = abs(tol) * smax, r__2 = *n * (*n * unfl) * 6;
 | |
| 	thresh = f2cmax(r__1,r__2);
 | |
|     }
 | |
| 
 | |
| /*     Prepare for main iteration loop for the singular values */
 | |
| /*     (MAXIT is the maximum number of passes through the inner */
 | |
| /*     loop permitted before nonconvergence signalled.) */
 | |
| 
 | |
|     maxitdivn = *n * 6;
 | |
|     iterdivn = 0;
 | |
|     iter = -1;
 | |
|     oldll = -1;
 | |
|     oldm = -1;
 | |
| 
 | |
| /*     M points to last element of unconverged part of matrix */
 | |
| 
 | |
|     m = *n;
 | |
| 
 | |
| /*     Begin main iteration loop */
 | |
| 
 | |
| L60:
 | |
| 
 | |
| /*     Check for convergence or exceeding iteration count */
 | |
| 
 | |
|     if (m <= 1) {
 | |
| 	goto L160;
 | |
|     }
 | |
| 
 | |
|     if (iter >= *n) {
 | |
| 	iter -= *n;
 | |
| 	++iterdivn;
 | |
| 	if (iterdivn >= maxitdivn) {
 | |
| 	    goto L200;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Find diagonal block of matrix to work on */
 | |
| 
 | |
|     if (tol < 0.f && (r__1 = d__[m], abs(r__1)) <= thresh) {
 | |
| 	d__[m] = 0.f;
 | |
|     }
 | |
|     smax = (r__1 = d__[m], abs(r__1));
 | |
|     smin = smax;
 | |
|     i__1 = m - 1;
 | |
|     for (lll = 1; lll <= i__1; ++lll) {
 | |
| 	ll = m - lll;
 | |
| 	abss = (r__1 = d__[ll], abs(r__1));
 | |
| 	abse = (r__1 = e[ll], abs(r__1));
 | |
| 	if (tol < 0.f && abss <= thresh) {
 | |
| 	    d__[ll] = 0.f;
 | |
| 	}
 | |
| 	if (abse <= thresh) {
 | |
| 	    goto L80;
 | |
| 	}
 | |
| 	smin = f2cmin(smin,abss);
 | |
| /* Computing MAX */
 | |
| 	r__1 = f2cmax(smax,abss);
 | |
| 	smax = f2cmax(r__1,abse);
 | |
| /* L70: */
 | |
|     }
 | |
|     ll = 0;
 | |
|     goto L90;
 | |
| L80:
 | |
|     e[ll] = 0.f;
 | |
| 
 | |
| /*     Matrix splits since E(LL) = 0 */
 | |
| 
 | |
|     if (ll == m - 1) {
 | |
| 
 | |
| /*        Convergence of bottom singular value, return to top of loop */
 | |
| 
 | |
| 	--m;
 | |
| 	goto L60;
 | |
|     }
 | |
| L90:
 | |
|     ++ll;
 | |
| 
 | |
| /*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
 | |
| 
 | |
|     if (ll == m - 1) {
 | |
| 
 | |
| /*        2 by 2 block, handle separately */
 | |
| 
 | |
| 	slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
 | |
| 		 &sinl, &cosl);
 | |
| 	d__[m - 1] = sigmx;
 | |
| 	e[m - 1] = 0.f;
 | |
| 	d__[m] = sigmn;
 | |
| 
 | |
| /*        Compute singular vectors, if desired */
 | |
| 
 | |
| 	if (*ncvt > 0) {
 | |
| 	    srot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
 | |
| 		    cosr, &sinr);
 | |
| 	}
 | |
| 	if (*nru > 0) {
 | |
| 	    srot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
 | |
| 		    c__1, &cosl, &sinl);
 | |
| 	}
 | |
| 	if (*ncc > 0) {
 | |
| 	    srot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
 | |
| 		    cosl, &sinl);
 | |
| 	}
 | |
| 	m += -2;
 | |
| 	goto L60;
 | |
|     }
 | |
| 
 | |
| /*     If working on new submatrix, choose shift direction */
 | |
| /*     (from larger end diagonal element towards smaller) */
 | |
| 
 | |
|     if (ll > oldm || m < oldll) {
 | |
| 	if ((r__1 = d__[ll], abs(r__1)) >= (r__2 = d__[m], abs(r__2))) {
 | |
| 
 | |
| /*           Chase bulge from top (big end) to bottom (small end) */
 | |
| 
 | |
| 	    idir = 1;
 | |
| 	} else {
 | |
| 
 | |
| /*           Chase bulge from bottom (big end) to top (small end) */
 | |
| 
 | |
| 	    idir = 2;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Apply convergence tests */
 | |
| 
 | |
|     if (idir == 1) {
 | |
| 
 | |
| /*        Run convergence test in forward direction */
 | |
| /*        First apply standard test to bottom of matrix */
 | |
| 
 | |
| 	if ((r__2 = e[m - 1], abs(r__2)) <= abs(tol) * (r__1 = d__[m], abs(
 | |
| 		r__1)) || tol < 0.f && (r__3 = e[m - 1], abs(r__3)) <= thresh)
 | |
| 		 {
 | |
| 	    e[m - 1] = 0.f;
 | |
| 	    goto L60;
 | |
| 	}
 | |
| 
 | |
| 	if (tol >= 0.f) {
 | |
| 
 | |
| /*           If relative accuracy desired, */
 | |
| /*           apply convergence criterion forward */
 | |
| 
 | |
| 	    mu = (r__1 = d__[ll], abs(r__1));
 | |
| 	    sminl = mu;
 | |
| 	    i__1 = m - 1;
 | |
| 	    for (lll = ll; lll <= i__1; ++lll) {
 | |
| 		if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
 | |
| 		    e[lll] = 0.f;
 | |
| 		    goto L60;
 | |
| 		}
 | |
| 		mu = (r__2 = d__[lll + 1], abs(r__2)) * (mu / (mu + (r__1 = e[
 | |
| 			lll], abs(r__1))));
 | |
| 		sminl = f2cmin(sminl,mu);
 | |
| /* L100: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Run convergence test in backward direction */
 | |
| /*        First apply standard test to top of matrix */
 | |
| 
 | |
| 	if ((r__2 = e[ll], abs(r__2)) <= abs(tol) * (r__1 = d__[ll], abs(r__1)
 | |
| 		) || tol < 0.f && (r__3 = e[ll], abs(r__3)) <= thresh) {
 | |
| 	    e[ll] = 0.f;
 | |
| 	    goto L60;
 | |
| 	}
 | |
| 
 | |
| 	if (tol >= 0.f) {
 | |
| 
 | |
| /*           If relative accuracy desired, */
 | |
| /*           apply convergence criterion backward */
 | |
| 
 | |
| 	    mu = (r__1 = d__[m], abs(r__1));
 | |
| 	    sminl = mu;
 | |
| 	    i__1 = ll;
 | |
| 	    for (lll = m - 1; lll >= i__1; --lll) {
 | |
| 		if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
 | |
| 		    e[lll] = 0.f;
 | |
| 		    goto L60;
 | |
| 		}
 | |
| 		mu = (r__2 = d__[lll], abs(r__2)) * (mu / (mu + (r__1 = e[lll]
 | |
| 			, abs(r__1))));
 | |
| 		sminl = f2cmin(sminl,mu);
 | |
| /* L110: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     oldll = ll;
 | |
|     oldm = m;
 | |
| 
 | |
| /*     Compute shift.  First, test if shifting would ruin relative */
 | |
| /*     accuracy, and if so set the shift to zero. */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     r__1 = eps, r__2 = tol * .01f;
 | |
|     if (tol >= 0.f && *n * tol * (sminl / smax) <= f2cmax(r__1,r__2)) {
 | |
| 
 | |
| /*        Use a zero shift to avoid loss of relative accuracy */
 | |
| 
 | |
| 	shift = 0.f;
 | |
|     } else {
 | |
| 
 | |
| /*        Compute the shift from 2-by-2 block at end of matrix */
 | |
| 
 | |
| 	if (idir == 1) {
 | |
| 	    sll = (r__1 = d__[ll], abs(r__1));
 | |
| 	    slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
 | |
| 	} else {
 | |
| 	    sll = (r__1 = d__[m], abs(r__1));
 | |
| 	    slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
 | |
| 	}
 | |
| 
 | |
| /*        Test if shift negligible, and if so set to zero */
 | |
| 
 | |
| 	if (sll > 0.f) {
 | |
| /* Computing 2nd power */
 | |
| 	    r__1 = shift / sll;
 | |
| 	    if (r__1 * r__1 < eps) {
 | |
| 		shift = 0.f;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Increment iteration count */
 | |
| 
 | |
|     iter = iter + m - ll;
 | |
| 
 | |
| /*     If SHIFT = 0, do simplified QR iteration */
 | |
| 
 | |
|     if (shift == 0.f) {
 | |
| 	if (idir == 1) {
 | |
| 
 | |
| /*           Chase bulge from top to bottom */
 | |
| /*           Save cosines and sines for later singular vector updates */
 | |
| 
 | |
| 	    cs = 1.f;
 | |
| 	    oldcs = 1.f;
 | |
| 	    i__1 = m - 1;
 | |
| 	    for (i__ = ll; i__ <= i__1; ++i__) {
 | |
| 		r__1 = d__[i__] * cs;
 | |
| 		slartg_(&r__1, &e[i__], &cs, &sn, &r__);
 | |
| 		if (i__ > ll) {
 | |
| 		    e[i__ - 1] = oldsn * r__;
 | |
| 		}
 | |
| 		r__1 = oldcs * r__;
 | |
| 		r__2 = d__[i__ + 1] * sn;
 | |
| 		slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
 | |
| 		work[i__ - ll + 1] = cs;
 | |
| 		work[i__ - ll + 1 + nm1] = sn;
 | |
| 		work[i__ - ll + 1 + nm12] = oldcs;
 | |
| 		work[i__ - ll + 1 + nm13] = oldsn;
 | |
| /* L120: */
 | |
| 	    }
 | |
| 	    h__ = d__[m] * cs;
 | |
| 	    d__[m] = h__ * oldcs;
 | |
| 	    e[m - 1] = h__ * oldsn;
 | |
| 
 | |
| /*           Update singular vectors */
 | |
| 
 | |
| 	    if (*ncvt > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
 | |
| 			ll + vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	    if (*nru > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13 
 | |
| 			+ 1], &u[ll * u_dim1 + 1], ldu);
 | |
| 	    }
 | |
| 	    if (*ncc > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13 
 | |
| 			+ 1], &c__[ll + c_dim1], ldc);
 | |
| 	    }
 | |
| 
 | |
| /*           Test convergence */
 | |
| 
 | |
| 	    if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
 | |
| 		e[m - 1] = 0.f;
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Chase bulge from bottom to top */
 | |
| /*           Save cosines and sines for later singular vector updates */
 | |
| 
 | |
| 	    cs = 1.f;
 | |
| 	    oldcs = 1.f;
 | |
| 	    i__1 = ll + 1;
 | |
| 	    for (i__ = m; i__ >= i__1; --i__) {
 | |
| 		r__1 = d__[i__] * cs;
 | |
| 		slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
 | |
| 		if (i__ < m) {
 | |
| 		    e[i__] = oldsn * r__;
 | |
| 		}
 | |
| 		r__1 = oldcs * r__;
 | |
| 		r__2 = d__[i__ - 1] * sn;
 | |
| 		slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
 | |
| 		work[i__ - ll] = cs;
 | |
| 		work[i__ - ll + nm1] = -sn;
 | |
| 		work[i__ - ll + nm12] = oldcs;
 | |
| 		work[i__ - ll + nm13] = -oldsn;
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	    h__ = d__[ll] * cs;
 | |
| 	    d__[ll] = h__ * oldcs;
 | |
| 	    e[ll] = h__ * oldsn;
 | |
| 
 | |
| /*           Update singular vectors */
 | |
| 
 | |
| 	    if (*ncvt > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
 | |
| 			nm13 + 1], &vt[ll + vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	    if (*nru > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
 | |
| 			 u_dim1 + 1], ldu);
 | |
| 	    }
 | |
| 	    if (*ncc > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
 | |
| 			ll + c_dim1], ldc);
 | |
| 	    }
 | |
| 
 | |
| /*           Test convergence */
 | |
| 
 | |
| 	    if ((r__1 = e[ll], abs(r__1)) <= thresh) {
 | |
| 		e[ll] = 0.f;
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        Use nonzero shift */
 | |
| 
 | |
| 	if (idir == 1) {
 | |
| 
 | |
| /*           Chase bulge from top to bottom */
 | |
| /*           Save cosines and sines for later singular vector updates */
 | |
| 
 | |
| 	    f = ((r__1 = d__[ll], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[
 | |
| 		    ll]) + shift / d__[ll]);
 | |
| 	    g = e[ll];
 | |
| 	    i__1 = m - 1;
 | |
| 	    for (i__ = ll; i__ <= i__1; ++i__) {
 | |
| 		slartg_(&f, &g, &cosr, &sinr, &r__);
 | |
| 		if (i__ > ll) {
 | |
| 		    e[i__ - 1] = r__;
 | |
| 		}
 | |
| 		f = cosr * d__[i__] + sinr * e[i__];
 | |
| 		e[i__] = cosr * e[i__] - sinr * d__[i__];
 | |
| 		g = sinr * d__[i__ + 1];
 | |
| 		d__[i__ + 1] = cosr * d__[i__ + 1];
 | |
| 		slartg_(&f, &g, &cosl, &sinl, &r__);
 | |
| 		d__[i__] = r__;
 | |
| 		f = cosl * e[i__] + sinl * d__[i__ + 1];
 | |
| 		d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
 | |
| 		if (i__ < m - 1) {
 | |
| 		    g = sinl * e[i__ + 1];
 | |
| 		    e[i__ + 1] = cosl * e[i__ + 1];
 | |
| 		}
 | |
| 		work[i__ - ll + 1] = cosr;
 | |
| 		work[i__ - ll + 1 + nm1] = sinr;
 | |
| 		work[i__ - ll + 1 + nm12] = cosl;
 | |
| 		work[i__ - ll + 1 + nm13] = sinl;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	    e[m - 1] = f;
 | |
| 
 | |
| /*           Update singular vectors */
 | |
| 
 | |
| 	    if (*ncvt > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
 | |
| 			ll + vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	    if (*nru > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13 
 | |
| 			+ 1], &u[ll * u_dim1 + 1], ldu);
 | |
| 	    }
 | |
| 	    if (*ncc > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13 
 | |
| 			+ 1], &c__[ll + c_dim1], ldc);
 | |
| 	    }
 | |
| 
 | |
| /*           Test convergence */
 | |
| 
 | |
| 	    if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
 | |
| 		e[m - 1] = 0.f;
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Chase bulge from bottom to top */
 | |
| /*           Save cosines and sines for later singular vector updates */
 | |
| 
 | |
| 	    f = ((r__1 = d__[m], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[m]
 | |
| 		    ) + shift / d__[m]);
 | |
| 	    g = e[m - 1];
 | |
| 	    i__1 = ll + 1;
 | |
| 	    for (i__ = m; i__ >= i__1; --i__) {
 | |
| 		slartg_(&f, &g, &cosr, &sinr, &r__);
 | |
| 		if (i__ < m) {
 | |
| 		    e[i__] = r__;
 | |
| 		}
 | |
| 		f = cosr * d__[i__] + sinr * e[i__ - 1];
 | |
| 		e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
 | |
| 		g = sinr * d__[i__ - 1];
 | |
| 		d__[i__ - 1] = cosr * d__[i__ - 1];
 | |
| 		slartg_(&f, &g, &cosl, &sinl, &r__);
 | |
| 		d__[i__] = r__;
 | |
| 		f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
 | |
| 		d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
 | |
| 		if (i__ > ll + 1) {
 | |
| 		    g = sinl * e[i__ - 2];
 | |
| 		    e[i__ - 2] = cosl * e[i__ - 2];
 | |
| 		}
 | |
| 		work[i__ - ll] = cosr;
 | |
| 		work[i__ - ll + nm1] = -sinr;
 | |
| 		work[i__ - ll + nm12] = cosl;
 | |
| 		work[i__ - ll + nm13] = -sinl;
 | |
| /* L150: */
 | |
| 	    }
 | |
| 	    e[ll] = f;
 | |
| 
 | |
| /*           Test convergence */
 | |
| 
 | |
| 	    if ((r__1 = e[ll], abs(r__1)) <= thresh) {
 | |
| 		e[ll] = 0.f;
 | |
| 	    }
 | |
| 
 | |
| /*           Update singular vectors if desired */
 | |
| 
 | |
| 	    if (*ncvt > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
 | |
| 			nm13 + 1], &vt[ll + vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	    if (*nru > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
 | |
| 			 u_dim1 + 1], ldu);
 | |
| 	    }
 | |
| 	    if (*ncc > 0) {
 | |
| 		i__1 = m - ll + 1;
 | |
| 		slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
 | |
| 			ll + c_dim1], ldc);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     QR iteration finished, go back and check convergence */
 | |
| 
 | |
|     goto L60;
 | |
| 
 | |
| /*     All singular values converged, so make them positive */
 | |
| 
 | |
| L160:
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if (d__[i__] < 0.f) {
 | |
| 	    d__[i__] = -d__[i__];
 | |
| 
 | |
| /*           Change sign of singular vectors, if desired */
 | |
| 
 | |
| 	    if (*ncvt > 0) {
 | |
| 		sscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	}
 | |
| /* L170: */
 | |
|     }
 | |
| 
 | |
| /*     Sort the singular values into decreasing order (insertion sort on */
 | |
| /*     singular values, but only one transposition per singular vector) */
 | |
| 
 | |
|     i__1 = *n - 1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*        Scan for smallest D(I) */
 | |
| 
 | |
| 	isub = 1;
 | |
| 	smin = d__[1];
 | |
| 	i__2 = *n + 1 - i__;
 | |
| 	for (j = 2; j <= i__2; ++j) {
 | |
| 	    if (d__[j] <= smin) {
 | |
| 		isub = j;
 | |
| 		smin = d__[j];
 | |
| 	    }
 | |
| /* L180: */
 | |
| 	}
 | |
| 	if (isub != *n + 1 - i__) {
 | |
| 
 | |
| /*           Swap singular values and vectors */
 | |
| 
 | |
| 	    d__[isub] = d__[*n + 1 - i__];
 | |
| 	    d__[*n + 1 - i__] = smin;
 | |
| 	    if (*ncvt > 0) {
 | |
| 		sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ + 
 | |
| 			vt_dim1], ldvt);
 | |
| 	    }
 | |
| 	    if (*nru > 0) {
 | |
| 		sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) * 
 | |
| 			u_dim1 + 1], &c__1);
 | |
| 	    }
 | |
| 	    if (*ncc > 0) {
 | |
| 		sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ + 
 | |
| 			c_dim1], ldc);
 | |
| 	    }
 | |
| 	}
 | |
| /* L190: */
 | |
|     }
 | |
|     goto L220;
 | |
| 
 | |
| /*     Maximum number of iterations exceeded, failure to converge */
 | |
| 
 | |
| L200:
 | |
|     *info = 0;
 | |
|     i__1 = *n - 1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if (e[i__] != 0.f) {
 | |
| 	    ++(*info);
 | |
| 	}
 | |
| /* L210: */
 | |
|     }
 | |
| L220:
 | |
|     return;
 | |
| 
 | |
| /*     End of SBDSQR */
 | |
| 
 | |
| } /* sbdsqr_ */
 | |
| 
 |