917 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			917 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b IPARMQ */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download IPARMQ + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iparmq.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iparmq.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iparmq.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK ) */
 | |
| 
 | |
| /*       INTEGER            IHI, ILO, ISPEC, LWORK, N */
 | |
| /*       CHARACTER          NAME*( * ), OPTS*( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >      This program sets problem and machine dependent parameters */
 | |
| /* >      useful for xHSEQR and related subroutines for eigenvalue */
 | |
| /* >      problems. It is called whenever */
 | |
| /* >      IPARMQ is called with 12 <= ISPEC <= 16 */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] ISPEC */
 | |
| /* > \verbatim */
 | |
| /* >          ISPEC is INTEGER */
 | |
| /* >              ISPEC specifies which tunable parameter IPARMQ should */
 | |
| /* >              return. */
 | |
| /* > */
 | |
| /* >              ISPEC=12: (INMIN)  Matrices of order nmin or less */
 | |
| /* >                        are sent directly to xLAHQR, the implicit */
 | |
| /* >                        double shift QR algorithm.  NMIN must be */
 | |
| /* >                        at least 11. */
 | |
| /* > */
 | |
| /* >              ISPEC=13: (INWIN)  Size of the deflation window. */
 | |
| /* >                        This is best set greater than or equal to */
 | |
| /* >                        the number of simultaneous shifts NS. */
 | |
| /* >                        Larger matrices benefit from larger deflation */
 | |
| /* >                        windows. */
 | |
| /* > */
 | |
| /* >              ISPEC=14: (INIBL) Determines when to stop nibbling and */
 | |
| /* >                        invest in an (expensive) multi-shift QR sweep. */
 | |
| /* >                        If the aggressive early deflation subroutine */
 | |
| /* >                        finds LD converged eigenvalues from an order */
 | |
| /* >                        NW deflation window and LD > (NW*NIBBLE)/100, */
 | |
| /* >                        then the next QR sweep is skipped and early */
 | |
| /* >                        deflation is applied immediately to the */
 | |
| /* >                        remaining active diagonal block.  Setting */
 | |
| /* >                        IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a */
 | |
| /* >                        multi-shift QR sweep whenever early deflation */
 | |
| /* >                        finds a converged eigenvalue.  Setting */
 | |
| /* >                        IPARMQ(ISPEC=14) greater than or equal to 100 */
 | |
| /* >                        prevents TTQRE from skipping a multi-shift */
 | |
| /* >                        QR sweep. */
 | |
| /* > */
 | |
| /* >              ISPEC=15: (NSHFTS) The number of simultaneous shifts in */
 | |
| /* >                        a multi-shift QR iteration. */
 | |
| /* > */
 | |
| /* >              ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the */
 | |
| /* >                        following meanings. */
 | |
| /* >                        0:  During the multi-shift QR/QZ sweep, */
 | |
| /* >                            blocked eigenvalue reordering, blocked */
 | |
| /* >                            Hessenberg-triangular reduction, */
 | |
| /* >                            reflections and/or rotations are not */
 | |
| /* >                            accumulated when updating the */
 | |
| /* >                            far-from-diagonal matrix entries. */
 | |
| /* >                        1:  During the multi-shift QR/QZ sweep, */
 | |
| /* >                            blocked eigenvalue reordering, blocked */
 | |
| /* >                            Hessenberg-triangular reduction, */
 | |
| /* >                            reflections and/or rotations are */
 | |
| /* >                            accumulated, and matrix-matrix */
 | |
| /* >                            multiplication is used to update the */
 | |
| /* >                            far-from-diagonal matrix entries. */
 | |
| /* >                        2:  During the multi-shift QR/QZ sweep, */
 | |
| /* >                            blocked eigenvalue reordering, blocked */
 | |
| /* >                            Hessenberg-triangular reduction, */
 | |
| /* >                            reflections and/or rotations are */
 | |
| /* >                            accumulated, and 2-by-2 block structure */
 | |
| /* >                            is exploited during matrix-matrix */
 | |
| /* >                            multiplies. */
 | |
| /* >                        (If xTRMM is slower than xGEMM, then */
 | |
| /* >                        IPARMQ(ISPEC=16)=1 may be more efficient than */
 | |
| /* >                        IPARMQ(ISPEC=16)=2 despite the greater level of */
 | |
| /* >                        arithmetic work implied by the latter choice.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NAME */
 | |
| /* > \verbatim */
 | |
| /* >          NAME is CHARACTER string */
 | |
| /* >               Name of the calling subroutine */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] OPTS */
 | |
| /* > \verbatim */
 | |
| /* >          OPTS is CHARACTER string */
 | |
| /* >               This is a concatenation of the string arguments to */
 | |
| /* >               TTQRE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >               N is the order of the Hessenberg matrix H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >               It is assumed that H is already upper triangular */
 | |
| /* >               in rows and columns 1:ILO-1 and IHI+1:N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >               The amount of workspace available. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >       Little is known about how best to choose these parameters. */
 | |
| /* >       It is possible to use different values of the parameters */
 | |
| /* >       for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR. */
 | |
| /* > */
 | |
| /* >       It is probably best to choose different parameters for */
 | |
| /* >       different matrices and different parameters at different */
 | |
| /* >       times during the iteration, but this has not been */
 | |
| /* >       implemented --- yet. */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >       The best choices of most of the parameters depend */
 | |
| /* >       in an ill-understood way on the relative execution */
 | |
| /* >       rate of xLAQR3 and xLAQR5 and on the nature of each */
 | |
| /* >       particular eigenvalue problem.  Experiment may be the */
 | |
| /* >       only practical way to determine which choices are most */
 | |
| /* >       effective. */
 | |
| /* > */
 | |
| /* >       Following is a list of default values supplied by IPARMQ. */
 | |
| /* >       These defaults may be adjusted in order to attain better */
 | |
| /* >       performance in any particular computational environment. */
 | |
| /* > */
 | |
| /* >       IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point. */
 | |
| /* >                        Default: 75. (Must be at least 11.) */
 | |
| /* > */
 | |
| /* >       IPARMQ(ISPEC=13) Recommended deflation window size. */
 | |
| /* >                        This depends on ILO, IHI and NS, the */
 | |
| /* >                        number of simultaneous shifts returned */
 | |
| /* >                        by IPARMQ(ISPEC=15).  The default for */
 | |
| /* >                        (IHI-ILO+1) <= 500 is NS.  The default */
 | |
| /* >                        for (IHI-ILO+1) > 500 is 3*NS/2. */
 | |
| /* > */
 | |
| /* >       IPARMQ(ISPEC=14) Nibble crossover point.  Default: 14. */
 | |
| /* > */
 | |
| /* >       IPARMQ(ISPEC=15) Number of simultaneous shifts, NS. */
 | |
| /* >                        a multi-shift QR iteration. */
 | |
| /* > */
 | |
| /* >                        If IHI-ILO+1 is ... */
 | |
| /* > */
 | |
| /* >                        greater than      ...but less    ... the */
 | |
| /* >                        or equal to ...      than        default is */
 | |
| /* > */
 | |
| /* >                                0               30       NS =   2+ */
 | |
| /* >                               30               60       NS =   4+ */
 | |
| /* >                               60              150       NS =  10 */
 | |
| /* >                              150              590       NS =  ** */
 | |
| /* >                              590             3000       NS =  64 */
 | |
| /* >                             3000             6000       NS = 128 */
 | |
| /* >                             6000             infinity   NS = 256 */
 | |
| /* > */
 | |
| /* >                    (+)  By default matrices of this order are */
 | |
| /* >                         passed to the implicit double shift routine */
 | |
| /* >                         xLAHQR.  See IPARMQ(ISPEC=12) above.   These */
 | |
| /* >                         values of NS are used only in case of a rare */
 | |
| /* >                         xLAHQR failure. */
 | |
| /* > */
 | |
| /* >                    (**) The asterisks (**) indicate an ad-hoc */
 | |
| /* >                         function increasing from 10 to 64. */
 | |
| /* > */
 | |
| /* >       IPARMQ(ISPEC=16) Select structured matrix multiply. */
 | |
| /* >                        (See ISPEC=16 above for details.) */
 | |
| /* >                        Default: 3. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| integer iparmq_(integer *ispec, char *name__, char *opts, integer *n, integer 
 | |
| 	*ilo, integer *ihi, integer *lwork)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ret_val, i__1, i__2;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, ic, nh, ns, iz;
 | |
|     char subnam[6];
 | |
|     integer name_len;
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ================================================================ */
 | |
|     if (*ispec == 15 || *ispec == 13 || *ispec == 16) {
 | |
| 
 | |
| /*        ==== Set the number simultaneous shifts ==== */
 | |
| 
 | |
| 	nh = *ihi - *ilo + 1;
 | |
| 	ns = 2;
 | |
| 	if (nh >= 30) {
 | |
| 	    ns = 4;
 | |
| 	}
 | |
| 	if (nh >= 60) {
 | |
| 	    ns = 10;
 | |
| 	}
 | |
| 	if (nh >= 150) {
 | |
| /* Computing MAX */
 | |
| 	    r__1 = log((real) nh) / log(2.f);
 | |
| 	    i__1 = 10, i__2 = nh / i_nint(&r__1);
 | |
| 	    ns = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 	if (nh >= 590) {
 | |
| 	    ns = 64;
 | |
| 	}
 | |
| 	if (nh >= 3000) {
 | |
| 	    ns = 128;
 | |
| 	}
 | |
| 	if (nh >= 6000) {
 | |
| 	    ns = 256;
 | |
| 	}
 | |
| /* Computing MAX */
 | |
| 	i__1 = 2, i__2 = ns - ns % 2;
 | |
| 	ns = f2cmax(i__1,i__2);
 | |
|     }
 | |
| 
 | |
|     if (*ispec == 12) {
 | |
| 
 | |
| 
 | |
| /*        ===== Matrices of order smaller than NMIN get sent */
 | |
| /*        .     to xLAHQR, the classic double shift algorithm. */
 | |
| /*        .     This must be at least 11. ==== */
 | |
| 
 | |
| 	ret_val = 75;
 | |
| 
 | |
|     } else if (*ispec == 14) {
 | |
| 
 | |
| /*        ==== INIBL: skip a multi-shift qr iteration and */
 | |
| /*        .    whenever aggressive early deflation finds */
 | |
| /*        .    at least (NIBBLE*(window size)/100) deflations. ==== */
 | |
| 
 | |
| 	ret_val = 14;
 | |
| 
 | |
|     } else if (*ispec == 15) {
 | |
| 
 | |
| /*        ==== NSHFTS: The number of simultaneous shifts ===== */
 | |
| 
 | |
| 	ret_val = ns;
 | |
| 
 | |
|     } else if (*ispec == 13) {
 | |
| 
 | |
| /*        ==== NW: deflation window size.  ==== */
 | |
| 
 | |
| 	if (nh <= 500) {
 | |
| 	    ret_val = ns;
 | |
| 	} else {
 | |
| 	    ret_val = ns * 3 / 2;
 | |
| 	}
 | |
| 
 | |
|     } else if (*ispec == 16) {
 | |
| 
 | |
| /*        ==== IACC22: Whether to accumulate reflections */
 | |
| /*        .     before updating the far-from-diagonal elements */
 | |
| /*        .     and whether to use 2-by-2 block structure while */
 | |
| /*        .     doing it.  A small amount of work could be saved */
 | |
| /*        .     by making this choice dependent also upon the */
 | |
| /*        .     NH=IHI-ILO+1. */
 | |
| 
 | |
| 
 | |
| /*        Convert NAME to upper case if the first character is lower case. */
 | |
| 
 | |
| 	ret_val = 0;
 | |
| 	s_copy(subnam, name__, (ftnlen)6, name_len);
 | |
| 	ic = *(unsigned char *)subnam;
 | |
| 	iz = 'Z';
 | |
| 	if (iz == 90 || iz == 122) {
 | |
| 
 | |
| /*           ASCII character set */
 | |
| 
 | |
| 	    if (ic >= 97 && ic <= 122) {
 | |
| 		*(unsigned char *)subnam = (char) (ic - 32);
 | |
| 		for (i__ = 2; i__ <= 6; ++i__) {
 | |
| 		    ic = *(unsigned char *)&subnam[i__ - 1];
 | |
| 		    if (ic >= 97 && ic <= 122) {
 | |
| 			*(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	} else if (iz == 233 || iz == 169) {
 | |
| 
 | |
| /*           EBCDIC character set */
 | |
| 
 | |
| 	    if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 
 | |
| 		    && ic <= 169) {
 | |
| 		*(unsigned char *)subnam = (char) (ic + 64);
 | |
| 		for (i__ = 2; i__ <= 6; ++i__) {
 | |
| 		    ic = *(unsigned char *)&subnam[i__ - 1];
 | |
| 		    if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || 
 | |
| 			    ic >= 162 && ic <= 169) {
 | |
| 			*(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	} else if (iz == 218 || iz == 250) {
 | |
| 
 | |
| /*           Prime machines:  ASCII+128 */
 | |
| 
 | |
| 	    if (ic >= 225 && ic <= 250) {
 | |
| 		*(unsigned char *)subnam = (char) (ic - 32);
 | |
| 		for (i__ = 2; i__ <= 6; ++i__) {
 | |
| 		    ic = *(unsigned char *)&subnam[i__ - 1];
 | |
| 		    if (ic >= 225 && ic <= 250) {
 | |
| 			*(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (s_cmp(subnam + 1, "GGHRD", (ftnlen)5, (ftnlen)5) == 0 || s_cmp(
 | |
| 		subnam + 1, "GGHD3", (ftnlen)5, (ftnlen)5) == 0) {
 | |
| 	    ret_val = 1;
 | |
| 	    if (nh >= 14) {
 | |
| 		ret_val = 2;
 | |
| 	    }
 | |
| 	} else if (s_cmp(subnam + 3, "EXC", (ftnlen)3, (ftnlen)3) == 0) {
 | |
| 	    if (nh >= 14) {
 | |
| 		ret_val = 1;
 | |
| 	    }
 | |
| 	    if (nh >= 14) {
 | |
| 		ret_val = 2;
 | |
| 	    }
 | |
| 	} else if (s_cmp(subnam + 1, "HSEQR", (ftnlen)5, (ftnlen)5) == 0 || 
 | |
| 		s_cmp(subnam + 1, "LAQR", (ftnlen)4, (ftnlen)4) == 0) {
 | |
| 	    if (ns >= 14) {
 | |
| 		ret_val = 1;
 | |
| 	    }
 | |
| 	    if (ns >= 14) {
 | |
| 		ret_val = 2;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| /*        ===== invalid value of ispec ===== */
 | |
| 	ret_val = -1;
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     ==== End of IPARMQ ==== */
 | |
| 
 | |
|     return ret_val;
 | |
| } /* iparmq_ */
 | |
| 
 |