1254 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1254 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b1 = 0.;
 | |
| static doublereal c_b15 = 1.;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b44 = -1.;
 | |
| 
 | |
| /* > \brief \b DTGSJA */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DTGSJA + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsja.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsja.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsja.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, */
 | |
| /*                          LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, */
 | |
| /*                          Q, LDQ, WORK, NCALL MYCYCLE, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBQ, JOBU, JOBV */
 | |
| /*       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, */
 | |
| /*      $                   NCALL MYCYCLE, P */
 | |
| /*       DOUBLE PRECISION   TOLA, TOLB */
 | |
| /*       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ), */
 | |
| /*      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ), */
 | |
| /*      $                   V( LDV, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DTGSJA computes the generalized singular value decomposition (GSVD) */
 | |
| /* > of two real upper triangular (or trapezoidal) matrices A and B. */
 | |
| /* > */
 | |
| /* > On entry, it is assumed that matrices A and B have the following */
 | |
| /* > forms, which may be obtained by the preprocessing subroutine DGGSVP */
 | |
| /* > from a general M-by-N matrix A and P-by-N matrix B: */
 | |
| /* > */
 | |
| /* >              N-K-L  K    L */
 | |
| /* >    A =    K ( 0    A12  A13 ) if M-K-L >= 0; */
 | |
| /* >           L ( 0     0   A23 ) */
 | |
| /* >       M-K-L ( 0     0    0  ) */
 | |
| /* > */
 | |
| /* >            N-K-L  K    L */
 | |
| /* >    A =  K ( 0    A12  A13 ) if M-K-L < 0; */
 | |
| /* >       M-K ( 0     0   A23 ) */
 | |
| /* > */
 | |
| /* >            N-K-L  K    L */
 | |
| /* >    B =  L ( 0     0   B13 ) */
 | |
| /* >       P-L ( 0     0    0  ) */
 | |
| /* > */
 | |
| /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
 | |
| /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
 | |
| /* > otherwise A23 is (M-K)-by-L upper trapezoidal. */
 | |
| /* > */
 | |
| /* > On exit, */
 | |
| /* > */
 | |
| /* >        U**T *A*Q = D1*( 0 R ),    V**T *B*Q = D2*( 0 R ), */
 | |
| /* > */
 | |
| /* > where U, V and Q are orthogonal matrices. */
 | |
| /* > R is a nonsingular upper triangular matrix, and D1 and D2 are */
 | |
| /* > ``diagonal'' matrices, which are of the following structures: */
 | |
| /* > */
 | |
| /* > If M-K-L >= 0, */
 | |
| /* > */
 | |
| /* >                     K  L */
 | |
| /* >        D1 =     K ( I  0 ) */
 | |
| /* >                 L ( 0  C ) */
 | |
| /* >             M-K-L ( 0  0 ) */
 | |
| /* > */
 | |
| /* >                   K  L */
 | |
| /* >        D2 = L   ( 0  S ) */
 | |
| /* >             P-L ( 0  0 ) */
 | |
| /* > */
 | |
| /* >                N-K-L  K    L */
 | |
| /* >   ( 0 R ) = K (  0   R11  R12 ) K */
 | |
| /* >             L (  0    0   R22 ) L */
 | |
| /* > */
 | |
| /* > where */
 | |
| /* > */
 | |
| /* >   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
 | |
| /* >   S = diag( BETA(K+1),  ... , BETA(K+L) ), */
 | |
| /* >   C**2 + S**2 = I. */
 | |
| /* > */
 | |
| /* >   R is stored in A(1:K+L,N-K-L+1:N) on exit. */
 | |
| /* > */
 | |
| /* > If M-K-L < 0, */
 | |
| /* > */
 | |
| /* >                K M-K K+L-M */
 | |
| /* >     D1 =   K ( I  0    0   ) */
 | |
| /* >          M-K ( 0  C    0   ) */
 | |
| /* > */
 | |
| /* >                  K M-K K+L-M */
 | |
| /* >     D2 =   M-K ( 0  S    0   ) */
 | |
| /* >          K+L-M ( 0  0    I   ) */
 | |
| /* >            P-L ( 0  0    0   ) */
 | |
| /* > */
 | |
| /* >                N-K-L  K   M-K  K+L-M */
 | |
| /* > ( 0 R ) =    K ( 0    R11  R12  R13  ) */
 | |
| /* >           M-K ( 0     0   R22  R23  ) */
 | |
| /* >         K+L-M ( 0     0    0   R33  ) */
 | |
| /* > */
 | |
| /* > where */
 | |
| /* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
 | |
| /* > S = diag( BETA(K+1),  ... , BETA(M) ), */
 | |
| /* > C**2 + S**2 = I. */
 | |
| /* > */
 | |
| /* > R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored */
 | |
| /* >     (  0  R22 R23 ) */
 | |
| /* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
 | |
| /* > */
 | |
| /* > The computation of the orthogonal transformation matrices U, V or Q */
 | |
| /* > is optional.  These matrices may either be formed explicitly, or they */
 | |
| /* > may be postmultiplied into input matrices U1, V1, or Q1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBU */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU is CHARACTER*1 */
 | |
| /* >          = 'U':  U must contain an orthogonal matrix U1 on entry, and */
 | |
| /* >                  the product U1*U is returned; */
 | |
| /* >          = 'I':  U is initialized to the unit matrix, and the */
 | |
| /* >                  orthogonal matrix U is returned; */
 | |
| /* >          = 'N':  U is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBV */
 | |
| /* > \verbatim */
 | |
| /* >          JOBV is CHARACTER*1 */
 | |
| /* >          = 'V':  V must contain an orthogonal matrix V1 on entry, and */
 | |
| /* >                  the product V1*V is returned; */
 | |
| /* >          = 'I':  V is initialized to the unit matrix, and the */
 | |
| /* >                  orthogonal matrix V is returned; */
 | |
| /* >          = 'N':  V is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBQ */
 | |
| /* > \verbatim */
 | |
| /* >          JOBQ is CHARACTER*1 */
 | |
| /* >          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and */
 | |
| /* >                  the product Q1*Q is returned; */
 | |
| /* >          = 'I':  Q is initialized to the unit matrix, and the */
 | |
| /* >                  orthogonal matrix Q is returned; */
 | |
| /* >          = 'N':  Q is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] P */
 | |
| /* > \verbatim */
 | |
| /* >          P is INTEGER */
 | |
| /* >          The number of rows of the matrix B.  P >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrices A and B.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] L */
 | |
| /* > \verbatim */
 | |
| /* >          L is INTEGER */
 | |
| /* > */
 | |
| /* >          K and L specify the subblocks in the input matrices A and B: */
 | |
| /* >          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) */
 | |
| /* >          of A and B, whose GSVD is going to be computed by DTGSJA. */
 | |
| /* >          See Further Details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular */
 | |
| /* >          matrix R or part of R.  See Purpose for details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is DOUBLE PRECISION array, dimension (LDB,N) */
 | |
| /* >          On entry, the P-by-N matrix B. */
 | |
| /* >          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains */
 | |
| /* >          a part of R.  See Purpose for details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TOLA */
 | |
| /* > \verbatim */
 | |
| /* >          TOLA is DOUBLE PRECISION */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TOLB */
 | |
| /* > \verbatim */
 | |
| /* >          TOLB is DOUBLE PRECISION */
 | |
| /* > */
 | |
| /* >          TOLA and TOLB are the convergence criteria for the Jacobi- */
 | |
| /* >          Kogbetliantz iteration procedure. Generally, they are the */
 | |
| /* >          same as used in the preprocessing step, say */
 | |
| /* >              TOLA = f2cmax(M,N)*norm(A)*MAZHEPS, */
 | |
| /* >              TOLB = f2cmax(P,N)*norm(B)*MAZHEPS. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > */
 | |
| /* >          On exit, ALPHA and BETA contain the generalized singular */
 | |
| /* >          value pairs of A and B; */
 | |
| /* >            ALPHA(1:K) = 1, */
 | |
| /* >            BETA(1:K)  = 0, */
 | |
| /* >          and if M-K-L >= 0, */
 | |
| /* >            ALPHA(K+1:K+L) = diag(C), */
 | |
| /* >            BETA(K+1:K+L)  = diag(S), */
 | |
| /* >          or if M-K-L < 0, */
 | |
| /* >            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 */
 | |
| /* >            BETA(K+1:M) = S, BETA(M+1:K+L) = 1. */
 | |
| /* >          Furthermore, if K+L < N, */
 | |
| /* >            ALPHA(K+L+1:N) = 0 and */
 | |
| /* >            BETA(K+L+1:N)  = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is DOUBLE PRECISION array, dimension (LDU,M) */
 | |
| /* >          On entry, if JOBU = 'U', U must contain a matrix U1 (usually */
 | |
| /* >          the orthogonal matrix returned by DGGSVP). */
 | |
| /* >          On exit, */
 | |
| /* >          if JOBU = 'I', U contains the orthogonal matrix U; */
 | |
| /* >          if JOBU = 'U', U contains the product U1*U. */
 | |
| /* >          If JOBU = 'N', U is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U. LDU >= f2cmax(1,M) if */
 | |
| /* >          JOBU = 'U'; LDU >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is DOUBLE PRECISION array, dimension (LDV,P) */
 | |
| /* >          On entry, if JOBV = 'V', V must contain a matrix V1 (usually */
 | |
| /* >          the orthogonal matrix returned by DGGSVP). */
 | |
| /* >          On exit, */
 | |
| /* >          if JOBV = 'I', V contains the orthogonal matrix V; */
 | |
| /* >          if JOBV = 'V', V contains the product V1*V. */
 | |
| /* >          If JOBV = 'N', V is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >          The leading dimension of the array V. LDV >= f2cmax(1,P) if */
 | |
| /* >          JOBV = 'V'; LDV >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is DOUBLE PRECISION array, dimension (LDQ,N) */
 | |
| /* >          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually */
 | |
| /* >          the orthogonal matrix returned by DGGSVP). */
 | |
| /* >          On exit, */
 | |
| /* >          if JOBQ = 'I', Q contains the orthogonal matrix Q; */
 | |
| /* >          if JOBQ = 'Q', Q contains the product Q1*Q. */
 | |
| /* >          If JOBQ = 'N', Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
 | |
| /* >          JOBQ = 'Q'; LDQ >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NCALL MYCYCLE */
 | |
| /* > \verbatim */
 | |
| /* >          NCALL MYCYCLE is INTEGER */
 | |
| /* >          The number of cycles required for convergence. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          = 1:  the procedure does not converge after MAXIT cycles. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  Internal Parameters */
 | |
| /* >  =================== */
 | |
| /* > */
 | |
| /* >  MAXIT   INTEGER */
 | |
| /* >          MAXIT specifies the total loops that the iterative procedure */
 | |
| /* >          may take. If after MAXIT cycles, the routine fails to */
 | |
| /* >          converge, we return INFO = 1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce */
 | |
| /* >  f2cmin(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L */
 | |
| /* >  matrix B13 to the form: */
 | |
| /* > */
 | |
| /* >           U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1, */
 | |
| /* > */
 | |
| /* >  where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose */
 | |
| /* >  of Z.  C1 and S1 are diagonal matrices satisfying */
 | |
| /* > */
 | |
| /* >                C1**2 + S1**2 = I, */
 | |
| /* > */
 | |
| /* >  and R1 is an L-by-L nonsingular upper triangular matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dtgsja_(char *jobu, char *jobv, char *jobq, integer *m, 
 | |
| 	integer *p, integer *n, integer *k, integer *l, doublereal *a, 
 | |
| 	integer *lda, doublereal *b, integer *ldb, doublereal *tola, 
 | |
| 	doublereal *tolb, doublereal *alpha, doublereal *beta, doublereal *u, 
 | |
| 	integer *ldu, doublereal *v, integer *ldv, doublereal *q, integer *
 | |
| 	ldq, doublereal *work, integer *ncallmycycle, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, 
 | |
| 	    u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
 | |
|     doublereal d__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     extern /* Subroutine */ void drot_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *);
 | |
|     integer kcallmycycle, i__, j;
 | |
|     doublereal gamma;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     doublereal a1;
 | |
|     logical initq;
 | |
|     doublereal a2, a3, b1;
 | |
|     logical initu, initv, wantq, upper;
 | |
|     doublereal b2, b3;
 | |
|     logical wantu, wantv;
 | |
|     doublereal error, ssmin;
 | |
|     extern /* Subroutine */ void dlags2_(logical *, doublereal *, doublereal *,
 | |
| 	     doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *), dlapll_(integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *), dlartg_(
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
 | |
| 	     doublereal *, doublereal *, integer *);
 | |
|      extern int xerbla_(char *, integer *, ftnlen);
 | |
| //    extern integer myhuge_(doublereal *);
 | |
|     doublereal csq, csu, csv, snq, rwk, snu, snv;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --alpha;
 | |
|     --beta;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     initu = lsame_(jobu, "I");
 | |
|     wantu = initu || lsame_(jobu, "U");
 | |
| 
 | |
|     initv = lsame_(jobv, "I");
 | |
|     wantv = initv || lsame_(jobv, "V");
 | |
| 
 | |
|     initq = lsame_(jobq, "I");
 | |
|     wantq = initq || lsame_(jobq, "Q");
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! (initu || wantu || lsame_(jobu, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (initv || wantv || lsame_(jobv, "N"))) 
 | |
| 	    {
 | |
| 	*info = -2;
 | |
|     } else if (! (initq || wantq || lsame_(jobq, "N"))) 
 | |
| 	    {
 | |
| 	*info = -3;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*p < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -6;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldb < f2cmax(1,*p)) {
 | |
| 	*info = -12;
 | |
|     } else if (*ldu < 1 || wantu && *ldu < *m) {
 | |
| 	*info = -18;
 | |
|     } else if (*ldv < 1 || wantv && *ldv < *p) {
 | |
| 	*info = -20;
 | |
|     } else if (*ldq < 1 || wantq && *ldq < *n) {
 | |
| 	*info = -22;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DTGSJA", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize U, V and Q, if necessary */
 | |
| 
 | |
|     if (initu) {
 | |
| 	dlaset_("Full", m, m, &c_b1, &c_b15, &u[u_offset], ldu);
 | |
|     }
 | |
|     if (initv) {
 | |
| 	dlaset_("Full", p, p, &c_b1, &c_b15, &v[v_offset], ldv);
 | |
|     }
 | |
|     if (initq) {
 | |
| 	dlaset_("Full", n, n, &c_b1, &c_b15, &q[q_offset], ldq);
 | |
|     }
 | |
| 
 | |
| /*     Loop until convergence */
 | |
| 
 | |
|     upper = FALSE_;
 | |
|     for (kcallmycycle = 1; kcallmycycle <= 40; ++kcallmycycle) {
 | |
| 
 | |
| 	upper = ! upper;
 | |
| 
 | |
| 	i__1 = *l - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *l;
 | |
| 	    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 
 | |
| 		a1 = 0.;
 | |
| 		a2 = 0.;
 | |
| 		a3 = 0.;
 | |
| 		if (*k + i__ <= *m) {
 | |
| 		    a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
 | |
| 		}
 | |
| 		if (*k + j <= *m) {
 | |
| 		    a3 = a[*k + j + (*n - *l + j) * a_dim1];
 | |
| 		}
 | |
| 
 | |
| 		b1 = b[i__ + (*n - *l + i__) * b_dim1];
 | |
| 		b3 = b[j + (*n - *l + j) * b_dim1];
 | |
| 
 | |
| 		if (upper) {
 | |
| 		    if (*k + i__ <= *m) {
 | |
| 			a2 = a[*k + i__ + (*n - *l + j) * a_dim1];
 | |
| 		    }
 | |
| 		    b2 = b[i__ + (*n - *l + j) * b_dim1];
 | |
| 		} else {
 | |
| 		    if (*k + j <= *m) {
 | |
| 			a2 = a[*k + j + (*n - *l + i__) * a_dim1];
 | |
| 		    }
 | |
| 		    b2 = b[j + (*n - *l + i__) * b_dim1];
 | |
| 		}
 | |
| 
 | |
| 		dlags2_(&upper, &a1, &a2, &a3, &b1, &b2, &b3, &csu, &snu, &
 | |
| 			csv, &snv, &csq, &snq);
 | |
| 
 | |
| /*              Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A */
 | |
| 
 | |
| 		if (*k + j <= *m) {
 | |
| 		    drot_(l, &a[*k + j + (*n - *l + 1) * a_dim1], lda, &a[*k 
 | |
| 			    + i__ + (*n - *l + 1) * a_dim1], lda, &csu, &snu);
 | |
| 		}
 | |
| 
 | |
| /*              Update I-th and J-th rows of matrix B: V**T *B */
 | |
| 
 | |
| 		drot_(l, &b[j + (*n - *l + 1) * b_dim1], ldb, &b[i__ + (*n - *
 | |
| 			l + 1) * b_dim1], ldb, &csv, &snv);
 | |
| 
 | |
| /*              Update (N-L+I)-th and (N-L+J)-th columns of matrices */
 | |
| /*              A and B: A*Q and B*Q */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = *k + *l;
 | |
| 		i__3 = f2cmin(i__4,*m);
 | |
| 		drot_(&i__3, &a[(*n - *l + j) * a_dim1 + 1], &c__1, &a[(*n - *
 | |
| 			l + i__) * a_dim1 + 1], &c__1, &csq, &snq);
 | |
| 
 | |
| 		drot_(l, &b[(*n - *l + j) * b_dim1 + 1], &c__1, &b[(*n - *l + 
 | |
| 			i__) * b_dim1 + 1], &c__1, &csq, &snq);
 | |
| 
 | |
| 		if (upper) {
 | |
| 		    if (*k + i__ <= *m) {
 | |
| 			a[*k + i__ + (*n - *l + j) * a_dim1] = 0.;
 | |
| 		    }
 | |
| 		    b[i__ + (*n - *l + j) * b_dim1] = 0.;
 | |
| 		} else {
 | |
| 		    if (*k + j <= *m) {
 | |
| 			a[*k + j + (*n - *l + i__) * a_dim1] = 0.;
 | |
| 		    }
 | |
| 		    b[j + (*n - *l + i__) * b_dim1] = 0.;
 | |
| 		}
 | |
| 
 | |
| /*              Update orthogonal matrices U, V, Q, if desired. */
 | |
| 
 | |
| 		if (wantu && *k + j <= *m) {
 | |
| 		    drot_(m, &u[(*k + j) * u_dim1 + 1], &c__1, &u[(*k + i__) *
 | |
| 			     u_dim1 + 1], &c__1, &csu, &snu);
 | |
| 		}
 | |
| 
 | |
| 		if (wantv) {
 | |
| 		    drot_(p, &v[j * v_dim1 + 1], &c__1, &v[i__ * v_dim1 + 1], 
 | |
| 			    &c__1, &csv, &snv);
 | |
| 		}
 | |
| 
 | |
| 		if (wantq) {
 | |
| 		    drot_(n, &q[(*n - *l + j) * q_dim1 + 1], &c__1, &q[(*n - *
 | |
| 			    l + i__) * q_dim1 + 1], &c__1, &csq, &snq);
 | |
| 		}
 | |
| 
 | |
| /* L10: */
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| 	if (! upper) {
 | |
| 
 | |
| /*           The matrices A13 and B13 were lower triangular at the start */
 | |
| /*           of the cycle, and are now upper triangular. */
 | |
| 
 | |
| /*           Convergence test: test the parallelism of the corresponding */
 | |
| /*           rows of A and B. */
 | |
| 
 | |
| 	    error = 0.;
 | |
| /* Computing MIN */
 | |
| 	    i__2 = *l, i__3 = *m - *k;
 | |
| 	    i__1 = f2cmin(i__2,i__3);
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		dcopy_(&i__2, &a[*k + i__ + (*n - *l + i__) * a_dim1], lda, &
 | |
| 			work[1], &c__1);
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &work[*
 | |
| 			l + 1], &c__1);
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		dlapll_(&i__2, &work[1], &c__1, &work[*l + 1], &c__1, &ssmin);
 | |
| 		error = f2cmax(error,ssmin);
 | |
| /* L30: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (abs(error) <= f2cmin(*tola,*tolb)) {
 | |
| 		goto L50;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        End of cycle loop */
 | |
| 
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
| /*     The algorithm has not converged after MAXIT cycles. */
 | |
| 
 | |
|     *info = 1;
 | |
|     goto L100;
 | |
| 
 | |
| L50:
 | |
| 
 | |
| /*     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged. */
 | |
| /*     Compute the generalized singular value pairs (ALPHA, BETA), and */
 | |
| /*     set the triangular matrix R to array A. */
 | |
| 
 | |
|     i__1 = *k;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	alpha[i__] = 1.;
 | |
| 	beta[i__] = 0.;
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
| /* Computing MIN */
 | |
|     i__2 = *l, i__3 = *m - *k;
 | |
|     i__1 = f2cmin(i__2,i__3);
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| 	a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
 | |
| 	b1 = b[i__ + (*n - *l + i__) * b_dim1];
 | |
| 	gamma = b1 / a1;
 | |
| 
 | |
| 	if (gamma <= (doublereal) myhuge_(&c_b1) && gamma >= -((doublereal) 
 | |
| 		myhuge_(&c_b1))) {
 | |
| 
 | |
| /*           change sign if necessary */
 | |
| 
 | |
| 	    if (gamma < 0.) {
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		dscal_(&i__2, &c_b44, &b[i__ + (*n - *l + i__) * b_dim1], ldb)
 | |
| 			;
 | |
| 		if (wantv) {
 | |
| 		    dscal_(p, &c_b44, &v[i__ * v_dim1 + 1], &c__1);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    d__1 = abs(gamma);
 | |
| 	    dlartg_(&d__1, &c_b15, &beta[*k + i__], &alpha[*k + i__], &rwk);
 | |
| 
 | |
| 	    if (alpha[*k + i__] >= beta[*k + i__]) {
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		d__1 = 1. / alpha[*k + i__];
 | |
| 		dscal_(&i__2, &d__1, &a[*k + i__ + (*n - *l + i__) * a_dim1], 
 | |
| 			lda);
 | |
| 	    } else {
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		d__1 = 1. / beta[*k + i__];
 | |
| 		dscal_(&i__2, &d__1, &b[i__ + (*n - *l + i__) * b_dim1], ldb);
 | |
| 		i__2 = *l - i__ + 1;
 | |
| 		dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k 
 | |
| 			+ i__ + (*n - *l + i__) * a_dim1], lda);
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 	    alpha[*k + i__] = 0.;
 | |
| 	    beta[*k + i__] = 1.;
 | |
| 	    i__2 = *l - i__ + 1;
 | |
| 	    dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k + 
 | |
| 		    i__ + (*n - *l + i__) * a_dim1], lda);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /* L70: */
 | |
|     }
 | |
| 
 | |
| /*     Post-assignment */
 | |
| 
 | |
|     i__1 = *k + *l;
 | |
|     for (i__ = *m + 1; i__ <= i__1; ++i__) {
 | |
| 	alpha[i__] = 0.;
 | |
| 	beta[i__] = 1.;
 | |
| /* L80: */
 | |
|     }
 | |
| 
 | |
|     if (*k + *l < *n) {
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = *k + *l + 1; i__ <= i__1; ++i__) {
 | |
| 	    alpha[i__] = 0.;
 | |
| 	    beta[i__] = 0.;
 | |
| /* L90: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| L100:
 | |
|     *ncallmycycle = kcallmycycle;
 | |
|     return;
 | |
| 
 | |
| /*     End of DTGSJA */
 | |
| 
 | |
| } /* dtgsja_ */
 | |
| 
 |