863 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			863 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DTGSEN
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DTGSEN + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsen.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsen.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsen.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 | |
| *                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
 | |
| *                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            WANTQ, WANTZ
 | |
| *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
 | |
| *      $                   M, N
 | |
| *       DOUBLE PRECISION   PL, PR
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
| *      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
 | |
| *      $                   WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DTGSEN reorders the generalized real Schur decomposition of a real
 | |
| *> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
 | |
| *> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
 | |
| *> appears in the leading diagonal blocks of the upper quasi-triangular
 | |
| *> matrix A and the upper triangular B. The leading columns of Q and
 | |
| *> Z form orthonormal bases of the corresponding left and right eigen-
 | |
| *> spaces (deflating subspaces). (A, B) must be in generalized real
 | |
| *> Schur canonical form (as returned by DGGES), i.e. A is block upper
 | |
| *> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
 | |
| *> triangular.
 | |
| *>
 | |
| *> DTGSEN also computes the generalized eigenvalues
 | |
| *>
 | |
| *>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
 | |
| *>
 | |
| *> of the reordered matrix pair (A, B).
 | |
| *>
 | |
| *> Optionally, DTGSEN computes the estimates of reciprocal condition
 | |
| *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
 | |
| *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
 | |
| *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
 | |
| *> the selected cluster and the eigenvalues outside the cluster, resp.,
 | |
| *> and norms of "projections" onto left and right eigenspaces w.r.t.
 | |
| *> the selected cluster in the (1,1)-block.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IJOB
 | |
| *> \verbatim
 | |
| *>          IJOB is INTEGER
 | |
| *>          Specifies whether condition numbers are required for the
 | |
| *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
 | |
| *>          (Difu and Difl):
 | |
| *>           =0: Only reorder w.r.t. SELECT. No extras.
 | |
| *>           =1: Reciprocal of norms of "projections" onto left and right
 | |
| *>               eigenspaces w.r.t. the selected cluster (PL and PR).
 | |
| *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
 | |
| *>               (DIF(1:2)).
 | |
| *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
 | |
| *>               (DIF(1:2)).
 | |
| *>               About 5 times as expensive as IJOB = 2.
 | |
| *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
 | |
| *>               version to get it all.
 | |
| *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTQ
 | |
| *> \verbatim
 | |
| *>          WANTQ is LOGICAL
 | |
| *>          .TRUE. : update the left transformation matrix Q;
 | |
| *>          .FALSE.: do not update Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          .TRUE. : update the right transformation matrix Z;
 | |
| *>          .FALSE.: do not update Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          SELECT specifies the eigenvalues in the selected cluster.
 | |
| *>          To select a real eigenvalue w(j), SELECT(j) must be set to
 | |
| *>          .TRUE.. To select a complex conjugate pair of eigenvalues
 | |
| *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
 | |
| *>          either SELECT(j) or SELECT(j+1) or both must be set to
 | |
| *>          .TRUE.; a complex conjugate pair of eigenvalues must be
 | |
| *>          either both included in the cluster or both excluded.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension(LDA,N)
 | |
| *>          On entry, the upper quasi-triangular matrix A, with (A, B) in
 | |
| *>          generalized real Schur canonical form.
 | |
| *>          On exit, A is overwritten by the reordered matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension(LDB,N)
 | |
| *>          On entry, the upper triangular matrix B, with (A, B) in
 | |
| *>          generalized real Schur canonical form.
 | |
| *>          On exit, B is overwritten by the reordered matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION array, dimension (N)
 | |
| *>
 | |
| *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
 | |
| *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
 | |
| *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
 | |
| *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
 | |
| *>          the real generalized Schur form of (A,B) were further reduced
 | |
| *>          to triangular form using complex unitary transformations.
 | |
| *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
 | |
| *>          positive, then the j-th and (j+1)-st eigenvalues are a
 | |
| *>          complex conjugate pair, with ALPHAI(j+1) negative.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
 | |
| *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
 | |
| *>          On exit, Q has been postmultiplied by the left orthogonal
 | |
| *>          transformation matrix which reorder (A, B); The leading M
 | |
| *>          columns of Q form orthonormal bases for the specified pair of
 | |
| *>          left eigenspaces (deflating subspaces).
 | |
| *>          If WANTQ = .FALSE., Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.  LDQ >= 1;
 | |
| *>          and if WANTQ = .TRUE., LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
 | |
| *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
 | |
| *>          On exit, Z has been postmultiplied by the left orthogonal
 | |
| *>          transformation matrix which reorder (A, B); The leading M
 | |
| *>          columns of Z form orthonormal bases for the specified pair of
 | |
| *>          left eigenspaces (deflating subspaces).
 | |
| *>          If WANTZ = .FALSE., Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z. LDZ >= 1;
 | |
| *>          If WANTZ = .TRUE., LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The dimension of the specified pair of left and right eigen-
 | |
| *>          spaces (deflating subspaces). 0 <= M <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PL
 | |
| *> \verbatim
 | |
| *>          PL is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PR
 | |
| *> \verbatim
 | |
| *>          PR is DOUBLE PRECISION
 | |
| *>
 | |
| *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
 | |
| *>          reciprocal of the norm of "projections" onto left and right
 | |
| *>          eigenspaces with respect to the selected cluster.
 | |
| *>          0 < PL, PR <= 1.
 | |
| *>          If M = 0 or M = N, PL = PR  = 1.
 | |
| *>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIF
 | |
| *> \verbatim
 | |
| *>          DIF is DOUBLE PRECISION array, dimension (2).
 | |
| *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
 | |
| *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
 | |
| *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
 | |
| *>          estimates of Difu and Difl.
 | |
| *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
 | |
| *>          If IJOB = 0 or 1, DIF is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >=  4*N+16.
 | |
| *>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
 | |
| *>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK. LIWORK >= 1.
 | |
| *>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
 | |
| *>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the IWORK array,
 | |
| *>          returns this value as the first entry of the IWORK array, and
 | |
| *>          no error message related to LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>            =0: Successful exit.
 | |
| *>            <0: If INFO = -i, the i-th argument had an illegal value.
 | |
| *>            =1: Reordering of (A, B) failed because the transformed
 | |
| *>                matrix pair (A, B) would be too far from generalized
 | |
| *>                Schur form; the problem is very ill-conditioned.
 | |
| *>                (A, B) may have been partially reordered.
 | |
| *>                If requested, 0 is returned in DIF(*), PL and PR.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  DTGSEN first collects the selected eigenvalues by computing
 | |
| *>  orthogonal U and W that move them to the top left corner of (A, B).
 | |
| *>  In other words, the selected eigenvalues are the eigenvalues of
 | |
| *>  (A11, B11) in:
 | |
| *>
 | |
| *>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
 | |
| *>                              ( 0  A22),( 0  B22) n2
 | |
| *>                                n1  n2    n1  n2
 | |
| *>
 | |
| *>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
 | |
| *>  of U and W span the specified pair of left and right eigenspaces
 | |
| *>  (deflating subspaces) of (A, B).
 | |
| *>
 | |
| *>  If (A, B) has been obtained from the generalized real Schur
 | |
| *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
 | |
| *>  reordered generalized real Schur form of (C, D) is given by
 | |
| *>
 | |
| *>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
 | |
| *>
 | |
| *>  and the first n1 columns of Q*U and Z*W span the corresponding
 | |
| *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
 | |
| *>
 | |
| *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
 | |
| *>  then its value may differ significantly from its value before
 | |
| *>  reordering.
 | |
| *>
 | |
| *>  The reciprocal condition numbers of the left and right eigenspaces
 | |
| *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
 | |
| *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
 | |
| *>
 | |
| *>  The Difu and Difl are defined as:
 | |
| *>
 | |
| *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
 | |
| *>  and
 | |
| *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
 | |
| *>
 | |
| *>  where sigma-min(Zu) is the smallest singular value of the
 | |
| *>  (2*n1*n2)-by-(2*n1*n2) matrix
 | |
| *>
 | |
| *>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
 | |
| *>            [ kron(In2, B11)  -kron(B22**T, In1) ].
 | |
| *>
 | |
| *>  Here, Inx is the identity matrix of size nx and A22**T is the
 | |
| *>  transpose of A22. kron(X, Y) is the Kronecker product between
 | |
| *>  the matrices X and Y.
 | |
| *>
 | |
| *>  When DIF(2) is small, small changes in (A, B) can cause large changes
 | |
| *>  in the deflating subspace. An approximate (asymptotic) bound on the
 | |
| *>  maximum angular error in the computed deflating subspaces is
 | |
| *>
 | |
| *>       EPS * norm((A, B)) / DIF(2),
 | |
| *>
 | |
| *>  where EPS is the machine precision.
 | |
| *>
 | |
| *>  The reciprocal norm of the projectors on the left and right
 | |
| *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
 | |
| *>  They are computed as follows. First we compute L and R so that
 | |
| *>  P*(A, B)*Q is block diagonal, where
 | |
| *>
 | |
| *>       P = ( I -L ) n1           Q = ( I R ) n1
 | |
| *>           ( 0  I ) n2    and        ( 0 I ) n2
 | |
| *>             n1 n2                    n1 n2
 | |
| *>
 | |
| *>  and (L, R) is the solution to the generalized Sylvester equation
 | |
| *>
 | |
| *>       A11*R - L*A22 = -A12
 | |
| *>       B11*R - L*B22 = -B12
 | |
| *>
 | |
| *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
 | |
| *>  An approximate (asymptotic) bound on the average absolute error of
 | |
| *>  the selected eigenvalues is
 | |
| *>
 | |
| *>       EPS * norm((A, B)) / PL.
 | |
| *>
 | |
| *>  There are also global error bounds which valid for perturbations up
 | |
| *>  to a certain restriction:  A lower bound (x) on the smallest
 | |
| *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
 | |
| *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
 | |
| *>  (i.e. (A + E, B + F), is
 | |
| *>
 | |
| *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
 | |
| *>
 | |
| *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
 | |
| *>
 | |
| *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
 | |
| *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
 | |
| *>  associated with the selected cluster in the (1,1)-blocks can be
 | |
| *>  bounded as
 | |
| *>
 | |
| *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
 | |
| *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
 | |
| *>
 | |
| *>  See LAPACK User's Guide section 4.11 or the following references
 | |
| *>  for more information.
 | |
| *>
 | |
| *>  Note that if the default method for computing the Frobenius-norm-
 | |
| *>  based estimate DIF is not wanted (see DLATDF), then the parameter
 | |
| *>  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
 | |
| *>  (IJOB = 2 will be used)). See DTGSYL for more details.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | |
| *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | |
| *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | |
| *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | |
| *>
 | |
| *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | |
| *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | |
| *>      Estimation: Theory, Algorithms and Software,
 | |
| *>      Report UMINF - 94.04, Department of Computing Science, Umea
 | |
| *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
 | |
| *>      Note 87. To appear in Numerical Algorithms, 1996.
 | |
| *>
 | |
| *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | |
| *>      for Solving the Generalized Sylvester Equation and Estimating the
 | |
| *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | |
| *>      Department of Computing Science, Umea University, S-901 87 Umea,
 | |
| *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | |
| *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
 | |
| *>      1996.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 | |
|      $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
 | |
|      $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            WANTQ, WANTZ
 | |
|       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
 | |
|      $                   M, N
 | |
|       DOUBLE PRECISION   PL, PR
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | |
|      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
 | |
|      $                   WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            IDIFJB
 | |
|       PARAMETER          ( IDIFJB = 3 )
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
 | |
|      $                   WANTP
 | |
|       INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
 | |
|      $                   MN2, N1, N2
 | |
|       DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DTGSEN', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' ) / EPS
 | |
|       IERR = 0
 | |
| *
 | |
|       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
 | |
|       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
 | |
|       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
 | |
|       WANTD = WANTD1 .OR. WANTD2
 | |
| *
 | |
| *     Set M to the dimension of the specified pair of deflating
 | |
| *     subspaces.
 | |
| *
 | |
|       M = 0
 | |
|       PAIR = .FALSE.
 | |
|       IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
 | |
|       DO 10 K = 1, N
 | |
|          IF( PAIR ) THEN
 | |
|             PAIR = .FALSE.
 | |
|          ELSE
 | |
|             IF( K.LT.N ) THEN
 | |
|                IF( A( K+1, K ).EQ.ZERO ) THEN
 | |
|                   IF( SELECT( K ) )
 | |
|      $               M = M + 1
 | |
|                ELSE
 | |
|                   PAIR = .TRUE.
 | |
|                   IF( SELECT( K ) .OR. SELECT( K+1 ) )
 | |
|      $               M = M + 2
 | |
|                END IF
 | |
|             ELSE
 | |
|                IF( SELECT( N ) )
 | |
|      $            M = M + 1
 | |
|             END IF
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
 | |
|          LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
 | |
|          LIWMIN = MAX( 1, N+6 )
 | |
|       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
 | |
|          LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
 | |
|          LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
 | |
|       ELSE
 | |
|          LWMIN = MAX( 1, 4*N+16 )
 | |
|          LIWMIN = 1
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -22
 | |
|       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -24
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DTGSEN', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( M.EQ.N .OR. M.EQ.0 ) THEN
 | |
|          IF( WANTP ) THEN
 | |
|             PL = ONE
 | |
|             PR = ONE
 | |
|          END IF
 | |
|          IF( WANTD ) THEN
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             DO 20 I = 1, N
 | |
|                CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
 | |
|                CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
 | |
|    20       CONTINUE
 | |
|             DIF( 1 ) = DSCALE*SQRT( DSUM )
 | |
|             DIF( 2 ) = DIF( 1 )
 | |
|          END IF
 | |
|          GO TO 60
 | |
|       END IF
 | |
| *
 | |
| *     Collect the selected blocks at the top-left corner of (A, B).
 | |
| *
 | |
|       KS = 0
 | |
|       PAIR = .FALSE.
 | |
|       DO 30 K = 1, N
 | |
|          IF( PAIR ) THEN
 | |
|             PAIR = .FALSE.
 | |
|          ELSE
 | |
| *
 | |
|             SWAP = SELECT( K )
 | |
|             IF( K.LT.N ) THEN
 | |
|                IF( A( K+1, K ).NE.ZERO ) THEN
 | |
|                   PAIR = .TRUE.
 | |
|                   SWAP = SWAP .OR. SELECT( K+1 )
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IF( SWAP ) THEN
 | |
|                KS = KS + 1
 | |
| *
 | |
| *              Swap the K-th block to position KS.
 | |
| *              Perform the reordering of diagonal blocks in (A, B)
 | |
| *              by orthogonal transformation matrices and update
 | |
| *              Q and Z accordingly (if requested):
 | |
| *
 | |
|                KK = K
 | |
|                IF( K.NE.KS )
 | |
|      $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
 | |
|      $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
 | |
| *
 | |
|                IF( IERR.GT.0 ) THEN
 | |
| *
 | |
| *                 Swap is rejected: exit.
 | |
| *
 | |
|                   INFO = 1
 | |
|                   IF( WANTP ) THEN
 | |
|                      PL = ZERO
 | |
|                      PR = ZERO
 | |
|                   END IF
 | |
|                   IF( WANTD ) THEN
 | |
|                      DIF( 1 ) = ZERO
 | |
|                      DIF( 2 ) = ZERO
 | |
|                   END IF
 | |
|                   GO TO 60
 | |
|                END IF
 | |
| *
 | |
|                IF( PAIR )
 | |
|      $            KS = KS + 1
 | |
|             END IF
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
|       IF( WANTP ) THEN
 | |
| *
 | |
| *        Solve generalized Sylvester equation for R and L
 | |
| *        and compute PL and PR.
 | |
| *
 | |
|          N1 = M
 | |
|          N2 = N - M
 | |
|          I = N1 + 1
 | |
|          IJB = 0
 | |
|          CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
 | |
|          CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
 | |
|      $                N1 )
 | |
|          CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
 | |
|      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
 | |
|      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
 | |
|      $                LWORK-2*N1*N2, IWORK, IERR )
 | |
| *
 | |
| *        Estimate the reciprocal of norms of "projections" onto left
 | |
| *        and right eigenspaces.
 | |
| *
 | |
|          RDSCAL = ZERO
 | |
|          DSUM = ONE
 | |
|          CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
 | |
|          PL = RDSCAL*SQRT( DSUM )
 | |
|          IF( PL.EQ.ZERO ) THEN
 | |
|             PL = ONE
 | |
|          ELSE
 | |
|             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
 | |
|          END IF
 | |
|          RDSCAL = ZERO
 | |
|          DSUM = ONE
 | |
|          CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
 | |
|          PR = RDSCAL*SQRT( DSUM )
 | |
|          IF( PR.EQ.ZERO ) THEN
 | |
|             PR = ONE
 | |
|          ELSE
 | |
|             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTD ) THEN
 | |
| *
 | |
| *        Compute estimates of Difu and Difl.
 | |
| *
 | |
|          IF( WANTD1 ) THEN
 | |
|             N1 = M
 | |
|             N2 = N - M
 | |
|             I = N1 + 1
 | |
|             IJB = IDIFJB
 | |
| *
 | |
| *           Frobenius norm-based Difu-estimate.
 | |
| *
 | |
|             CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
 | |
|      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
 | |
|      $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
 | |
|      $                   LWORK-2*N1*N2, IWORK, IERR )
 | |
| *
 | |
| *           Frobenius norm-based Difl-estimate.
 | |
| *
 | |
|             CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
 | |
|      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
 | |
|      $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
 | |
|      $                   LWORK-2*N1*N2, IWORK, IERR )
 | |
|          ELSE
 | |
| *
 | |
| *
 | |
| *           Compute 1-norm-based estimates of Difu and Difl using
 | |
| *           reversed communication with DLACN2. In each step a
 | |
| *           generalized Sylvester equation or a transposed variant
 | |
| *           is solved.
 | |
| *
 | |
|             KASE = 0
 | |
|             N1 = M
 | |
|             N2 = N - M
 | |
|             I = N1 + 1
 | |
|             IJB = 0
 | |
|             MN2 = 2*N1*N2
 | |
| *
 | |
| *           1-norm-based estimate of Difu.
 | |
| *
 | |
|    40       CONTINUE
 | |
|             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
 | |
|      $                   KASE, ISAVE )
 | |
|             IF( KASE.NE.0 ) THEN
 | |
|                IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *                 Solve generalized Sylvester equation.
 | |
| *
 | |
|                   CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
 | |
|      $                         WORK, N1, B, LDB, B( I, I ), LDB,
 | |
|      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
 | |
|      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                ELSE
 | |
| *
 | |
| *                 Solve the transposed variant.
 | |
| *
 | |
|                   CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
 | |
|      $                         WORK, N1, B, LDB, B( I, I ), LDB,
 | |
|      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
 | |
|      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                END IF
 | |
|                GO TO 40
 | |
|             END IF
 | |
|             DIF( 1 ) = DSCALE / DIF( 1 )
 | |
| *
 | |
| *           1-norm-based estimate of Difl.
 | |
| *
 | |
|    50       CONTINUE
 | |
|             CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
 | |
|      $                   KASE, ISAVE )
 | |
|             IF( KASE.NE.0 ) THEN
 | |
|                IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *                 Solve generalized Sylvester equation.
 | |
| *
 | |
|                   CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
 | |
|      $                         WORK, N2, B( I, I ), LDB, B, LDB,
 | |
|      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
 | |
|      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                ELSE
 | |
| *
 | |
| *                 Solve the transposed variant.
 | |
| *
 | |
|                   CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
 | |
|      $                         WORK, N2, B( I, I ), LDB, B, LDB,
 | |
|      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
 | |
|      $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                END IF
 | |
|                GO TO 50
 | |
|             END IF
 | |
|             DIF( 2 ) = DSCALE / DIF( 2 )
 | |
| *
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     Compute generalized eigenvalues of reordered pair (A, B) and
 | |
| *     normalize the generalized Schur form.
 | |
| *
 | |
|       PAIR = .FALSE.
 | |
|       DO 80 K = 1, N
 | |
|          IF( PAIR ) THEN
 | |
|             PAIR = .FALSE.
 | |
|          ELSE
 | |
| *
 | |
|             IF( K.LT.N ) THEN
 | |
|                IF( A( K+1, K ).NE.ZERO ) THEN
 | |
|                   PAIR = .TRUE.
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IF( PAIR ) THEN
 | |
| *
 | |
| *             Compute the eigenvalue(s) at position K.
 | |
| *
 | |
|                WORK( 1 ) = A( K, K )
 | |
|                WORK( 2 ) = A( K+1, K )
 | |
|                WORK( 3 ) = A( K, K+1 )
 | |
|                WORK( 4 ) = A( K+1, K+1 )
 | |
|                WORK( 5 ) = B( K, K )
 | |
|                WORK( 6 ) = B( K+1, K )
 | |
|                WORK( 7 ) = B( K, K+1 )
 | |
|                WORK( 8 ) = B( K+1, K+1 )
 | |
|                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
 | |
|      $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
 | |
|      $                     ALPHAI( K ) )
 | |
|                ALPHAI( K+1 ) = -ALPHAI( K )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
 | |
| *
 | |
| *                 If B(K,K) is negative, make it positive
 | |
| *
 | |
|                   DO 70 I = 1, N
 | |
|                      A( K, I ) = -A( K, I )
 | |
|                      B( K, I ) = -B( K, I )
 | |
|                      IF( WANTQ ) Q( I, K ) = -Q( I, K )
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                ALPHAR( K ) = A( K, K )
 | |
|                ALPHAI( K ) = ZERO
 | |
|                BETA( K ) = B( K, K )
 | |
| *
 | |
|             END IF
 | |
|          END IF
 | |
|    80 CONTINUE
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTGSEN
 | |
| *
 | |
|       END
 |