1971 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1971 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static logical c_true = TRUE_;
 | |
| static integer c__2 = 2;
 | |
| static doublereal c_b34 = 1.;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b36 = 0.;
 | |
| static logical c_false = FALSE_;
 | |
| 
 | |
| /* > \brief \b DTGEVC */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DTGEVC + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgevc.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgevc.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgevc.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, */
 | |
| /*                          LDVL, VR, LDVR, MM, M, WORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          HOWMNY, SIDE */
 | |
| /*       INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       DOUBLE PRECISION   P( LDP, * ), S( LDS, * ), VL( LDVL, * ), */
 | |
| /*      $                   VR( LDVR, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DTGEVC computes some or all of the right and/or left eigenvectors of */
 | |
| /* > a pair of real matrices (S,P), where S is a quasi-triangular matrix */
 | |
| /* > and P is upper triangular.  Matrix pairs of this type are produced by */
 | |
| /* > the generalized Schur factorization of a matrix pair (A,B): */
 | |
| /* > */
 | |
| /* >    A = Q*S*Z**T,  B = Q*P*Z**T */
 | |
| /* > */
 | |
| /* > as computed by DGGHRD + DHGEQZ. */
 | |
| /* > */
 | |
| /* > The right eigenvector x and the left eigenvector y of (S,P) */
 | |
| /* > corresponding to an eigenvalue w are defined by: */
 | |
| /* > */
 | |
| /* >    S*x = w*P*x,  (y**H)*S = w*(y**H)*P, */
 | |
| /* > */
 | |
| /* > where y**H denotes the conjugate tranpose of y. */
 | |
| /* > The eigenvalues are not input to this routine, but are computed */
 | |
| /* > directly from the diagonal blocks of S and P. */
 | |
| /* > */
 | |
| /* > This routine returns the matrices X and/or Y of right and left */
 | |
| /* > eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
 | |
| /* > where Z and Q are input matrices. */
 | |
| /* > If Q and Z are the orthogonal factors from the generalized Schur */
 | |
| /* > factorization of a matrix pair (A,B), then Z*X and Q*Y */
 | |
| /* > are the matrices of right and left eigenvectors of (A,B). */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          = 'R': compute right eigenvectors only; */
 | |
| /* >          = 'L': compute left eigenvectors only; */
 | |
| /* >          = 'B': compute both right and left eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] HOWMNY */
 | |
| /* > \verbatim */
 | |
| /* >          HOWMNY is CHARACTER*1 */
 | |
| /* >          = 'A': compute all right and/or left eigenvectors; */
 | |
| /* >          = 'B': compute all right and/or left eigenvectors, */
 | |
| /* >                 backtransformed by the matrices in VR and/or VL; */
 | |
| /* >          = 'S': compute selected right and/or left eigenvectors, */
 | |
| /* >                 specified by the logical array SELECT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          If HOWMNY='S', SELECT specifies the eigenvectors to be */
 | |
| /* >          computed.  If w(j) is a real eigenvalue, the corresponding */
 | |
| /* >          real eigenvector is computed if SELECT(j) is .TRUE.. */
 | |
| /* >          If w(j) and w(j+1) are the real and imaginary parts of a */
 | |
| /* >          complex eigenvalue, the corresponding complex eigenvector */
 | |
| /* >          is computed if either SELECT(j) or SELECT(j+1) is .TRUE., */
 | |
| /* >          and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is */
 | |
| /* >          set to .FALSE.. */
 | |
| /* >          Not referenced if HOWMNY = 'A' or 'B'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices S and P.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION array, dimension (LDS,N) */
 | |
| /* >          The upper quasi-triangular matrix S from a generalized Schur */
 | |
| /* >          factorization, as computed by DHGEQZ. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDS */
 | |
| /* > \verbatim */
 | |
| /* >          LDS is INTEGER */
 | |
| /* >          The leading dimension of array S.  LDS >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] P */
 | |
| /* > \verbatim */
 | |
| /* >          P is DOUBLE PRECISION array, dimension (LDP,N) */
 | |
| /* >          The upper triangular matrix P from a generalized Schur */
 | |
| /* >          factorization, as computed by DHGEQZ. */
 | |
| /* >          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks */
 | |
| /* >          of S must be in positive diagonal form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDP */
 | |
| /* > \verbatim */
 | |
| /* >          LDP is INTEGER */
 | |
| /* >          The leading dimension of array P.  LDP >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION array, dimension (LDVL,MM) */
 | |
| /* >          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
 | |
| /* >          contain an N-by-N matrix Q (usually the orthogonal matrix Q */
 | |
| /* >          of left Schur vectors returned by DHGEQZ). */
 | |
| /* >          On exit, if SIDE = 'L' or 'B', VL contains: */
 | |
| /* >          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
 | |
| /* >          if HOWMNY = 'B', the matrix Q*Y; */
 | |
| /* >          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
 | |
| /* >                      SELECT, stored consecutively in the columns of */
 | |
| /* >                      VL, in the same order as their eigenvalues. */
 | |
| /* > */
 | |
| /* >          A complex eigenvector corresponding to a complex eigenvalue */
 | |
| /* >          is stored in two consecutive columns, the first holding the */
 | |
| /* >          real part, and the second the imaginary part. */
 | |
| /* > */
 | |
| /* >          Not referenced if SIDE = 'R'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of array VL.  LDVL >= 1, and if */
 | |
| /* >          SIDE = 'L' or 'B', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is DOUBLE PRECISION array, dimension (LDVR,MM) */
 | |
| /* >          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
 | |
| /* >          contain an N-by-N matrix Z (usually the orthogonal matrix Z */
 | |
| /* >          of right Schur vectors returned by DHGEQZ). */
 | |
| /* > */
 | |
| /* >          On exit, if SIDE = 'R' or 'B', VR contains: */
 | |
| /* >          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
 | |
| /* >          if HOWMNY = 'B' or 'b', the matrix Z*X; */
 | |
| /* >          if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) */
 | |
| /* >                      specified by SELECT, stored consecutively in the */
 | |
| /* >                      columns of VR, in the same order as their */
 | |
| /* >                      eigenvalues. */
 | |
| /* > */
 | |
| /* >          A complex eigenvector corresponding to a complex eigenvalue */
 | |
| /* >          is stored in two consecutive columns, the first holding the */
 | |
| /* >          real part and the second the imaginary part. */
 | |
| /* > */
 | |
| /* >          Not referenced if SIDE = 'L'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the array VR.  LDVR >= 1, and if */
 | |
| /* >          SIDE = 'R' or 'B', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MM */
 | |
| /* > \verbatim */
 | |
| /* >          MM is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR. MM >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR actually */
 | |
| /* >          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M */
 | |
| /* >          is set to N.  Each selected real eigenvector occupies one */
 | |
| /* >          column and each selected complex eigenvector occupies two */
 | |
| /* >          columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (6*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  the 2-by-2 block (INFO:INFO+1) does not have a complex */
 | |
| /* >                eigenvalue. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleGEcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Allocation of workspace: */
 | |
| /* >  ---------- -- --------- */
 | |
| /* > */
 | |
| /* >     WORK( j ) = 1-norm of j-th column of A, above the diagonal */
 | |
| /* >     WORK( N+j ) = 1-norm of j-th column of B, above the diagonal */
 | |
| /* >     WORK( 2*N+1:3*N ) = real part of eigenvector */
 | |
| /* >     WORK( 3*N+1:4*N ) = imaginary part of eigenvector */
 | |
| /* >     WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector */
 | |
| /* >     WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector */
 | |
| /* > */
 | |
| /* >  Rowwise vs. columnwise solution methods: */
 | |
| /* >  ------- --  ---------- -------- ------- */
 | |
| /* > */
 | |
| /* >  Finding a generalized eigenvector consists basically of solving the */
 | |
| /* >  singular triangular system */
 | |
| /* > */
 | |
| /* >   (A - w B) x = 0     (for right) or:   (A - w B)**H y = 0  (for left) */
 | |
| /* > */
 | |
| /* >  Consider finding the i-th right eigenvector (assume all eigenvalues */
 | |
| /* >  are real). The equation to be solved is: */
 | |
| /* >       n                   i */
 | |
| /* >  0 = sum  C(j,k) v(k)  = sum  C(j,k) v(k)     for j = i,. . .,1 */
 | |
| /* >      k=j                 k=j */
 | |
| /* > */
 | |
| /* >  where  C = (A - w B)  (The components v(i+1:n) are 0.) */
 | |
| /* > */
 | |
| /* >  The "rowwise" method is: */
 | |
| /* > */
 | |
| /* >  (1)  v(i) := 1 */
 | |
| /* >  for j = i-1,. . .,1: */
 | |
| /* >                          i */
 | |
| /* >      (2) compute  s = - sum C(j,k) v(k)   and */
 | |
| /* >                        k=j+1 */
 | |
| /* > */
 | |
| /* >      (3) v(j) := s / C(j,j) */
 | |
| /* > */
 | |
| /* >  Step 2 is sometimes called the "dot product" step, since it is an */
 | |
| /* >  inner product between the j-th row and the portion of the eigenvector */
 | |
| /* >  that has been computed so far. */
 | |
| /* > */
 | |
| /* >  The "columnwise" method consists basically in doing the sums */
 | |
| /* >  for all the rows in parallel.  As each v(j) is computed, the */
 | |
| /* >  contribution of v(j) times the j-th column of C is added to the */
 | |
| /* >  partial sums.  Since FORTRAN arrays are stored columnwise, this has */
 | |
| /* >  the advantage that at each step, the elements of C that are accessed */
 | |
| /* >  are adjacent to one another, whereas with the rowwise method, the */
 | |
| /* >  elements accessed at a step are spaced LDS (and LDP) words apart. */
 | |
| /* > */
 | |
| /* >  When finding left eigenvectors, the matrix in question is the */
 | |
| /* >  transpose of the one in storage, so the rowwise method then */
 | |
| /* >  actually accesses columns of A and B at each step, and so is the */
 | |
| /* >  preferred method. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dtgevc_(char *side, char *howmny, logical *select, 
 | |
| 	integer *n, doublereal *s, integer *lds, doublereal *p, integer *ldp, 
 | |
| 	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer 
 | |
| 	*mm, integer *m, doublereal *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1, 
 | |
| 	    vr_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ibeg, ieig, iend;
 | |
|     doublereal dmin__, temp, xmax, sump[4]	/* was [2][2] */, sums[4]	
 | |
| 	    /* was [2][2] */;
 | |
|     extern /* Subroutine */ void dlag2_(doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
 | |
| 	     doublereal *, doublereal *);
 | |
|     doublereal cim2a, cim2b, cre2a, cre2b, temp2, bdiag[2];
 | |
|     integer i__, j;
 | |
|     doublereal acoef, scale;
 | |
|     logical ilall;
 | |
|     integer iside;
 | |
|     doublereal sbeta;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void dgemv_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *);
 | |
|     logical il2by2;
 | |
|     integer iinfo;
 | |
|     doublereal small;
 | |
|     logical compl;
 | |
|     doublereal anorm, bnorm;
 | |
|     logical compr;
 | |
|     extern /* Subroutine */ void dlaln2_(logical *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
 | |
| 	     doublereal *, doublereal *, integer *, doublereal *, doublereal *
 | |
| 	    , doublereal *, integer *, doublereal *, doublereal *, integer *);
 | |
|     doublereal temp2i;
 | |
|     extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
 | |
|     doublereal temp2r;
 | |
|     integer ja;
 | |
|     logical ilabad, ilbbad;
 | |
|     integer jc, je, na;
 | |
|     doublereal acoefa, bcoefa, cimaga, cimagb;
 | |
|     logical ilback;
 | |
|     integer im;
 | |
|     doublereal bcoefi, ascale, bscale, creala;
 | |
|     integer jr;
 | |
|     doublereal crealb;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal bcoefr;
 | |
|     integer jw, nw;
 | |
|     doublereal salfar, safmin;
 | |
|     extern /* Subroutine */ void dlacpy_(char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     doublereal xscale, bignum;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     logical ilcomp, ilcplx;
 | |
|     integer ihwmny;
 | |
|     doublereal big;
 | |
|     logical lsa, lsb;
 | |
|     doublereal ulp, sum[4]	/* was [2][2] */;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     s_dim1 = *lds;
 | |
|     s_offset = 1 + s_dim1 * 1;
 | |
|     s -= s_offset;
 | |
|     p_dim1 = *ldp;
 | |
|     p_offset = 1 + p_dim1 * 1;
 | |
|     p -= p_offset;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(howmny, "A")) {
 | |
| 	ihwmny = 1;
 | |
| 	ilall = TRUE_;
 | |
| 	ilback = FALSE_;
 | |
|     } else if (lsame_(howmny, "S")) {
 | |
| 	ihwmny = 2;
 | |
| 	ilall = FALSE_;
 | |
| 	ilback = FALSE_;
 | |
|     } else if (lsame_(howmny, "B")) {
 | |
| 	ihwmny = 3;
 | |
| 	ilall = TRUE_;
 | |
| 	ilback = TRUE_;
 | |
|     } else {
 | |
| 	ihwmny = -1;
 | |
| 	ilall = TRUE_;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(side, "R")) {
 | |
| 	iside = 1;
 | |
| 	compl = FALSE_;
 | |
| 	compr = TRUE_;
 | |
|     } else if (lsame_(side, "L")) {
 | |
| 	iside = 2;
 | |
| 	compl = TRUE_;
 | |
| 	compr = FALSE_;
 | |
|     } else if (lsame_(side, "B")) {
 | |
| 	iside = 3;
 | |
| 	compl = TRUE_;
 | |
| 	compr = TRUE_;
 | |
|     } else {
 | |
| 	iside = -1;
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (iside < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (ihwmny < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lds < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldp < f2cmax(1,*n)) {
 | |
| 	*info = -8;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DTGEVC", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Count the number of eigenvectors to be computed */
 | |
| 
 | |
|     if (! ilall) {
 | |
| 	im = 0;
 | |
| 	ilcplx = FALSE_;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    if (ilcplx) {
 | |
| 		ilcplx = FALSE_;
 | |
| 		goto L10;
 | |
| 	    }
 | |
| 	    if (j < *n) {
 | |
| 		if (s[j + 1 + j * s_dim1] != 0.) {
 | |
| 		    ilcplx = TRUE_;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (ilcplx) {
 | |
| 		if (select[j] || select[j + 1]) {
 | |
| 		    im += 2;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (select[j]) {
 | |
| 		    ++im;
 | |
| 		}
 | |
| 	    }
 | |
| L10:
 | |
| 	    ;
 | |
| 	}
 | |
|     } else {
 | |
| 	im = *n;
 | |
|     }
 | |
| 
 | |
| /*     Check 2-by-2 diagonal blocks of A, B */
 | |
| 
 | |
|     ilabad = FALSE_;
 | |
|     ilbbad = FALSE_;
 | |
|     i__1 = *n - 1;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	if (s[j + 1 + j * s_dim1] != 0.) {
 | |
| 	    if (p[j + j * p_dim1] == 0. || p[j + 1 + (j + 1) * p_dim1] == 0. 
 | |
| 		    || p[j + (j + 1) * p_dim1] != 0.) {
 | |
| 		ilbbad = TRUE_;
 | |
| 	    }
 | |
| 	    if (j < *n - 1) {
 | |
| 		if (s[j + 2 + (j + 1) * s_dim1] != 0.) {
 | |
| 		    ilabad = TRUE_;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     if (ilabad) {
 | |
| 	*info = -5;
 | |
|     } else if (ilbbad) {
 | |
| 	*info = -7;
 | |
|     } else if (compl && *ldvl < *n || *ldvl < 1) {
 | |
| 	*info = -10;
 | |
|     } else if (compr && *ldvr < *n || *ldvr < 1) {
 | |
| 	*info = -12;
 | |
|     } else if (*mm < im) {
 | |
| 	*info = -13;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DTGEVC", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *m = im;
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Machine Constants */
 | |
| 
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     big = 1. / safmin;
 | |
|     dlabad_(&safmin, &big);
 | |
|     ulp = dlamch_("Epsilon") * dlamch_("Base");
 | |
|     small = safmin * *n / ulp;
 | |
|     big = 1. / small;
 | |
|     bignum = 1. / (safmin * *n);
 | |
| 
 | |
| /*     Compute the 1-norm of each column of the strictly upper triangular */
 | |
| /*     part (i.e., excluding all elements belonging to the diagonal */
 | |
| /*     blocks) of A and B to check for possible overflow in the */
 | |
| /*     triangular solver. */
 | |
| 
 | |
|     anorm = (d__1 = s[s_dim1 + 1], abs(d__1));
 | |
|     if (*n > 1) {
 | |
| 	anorm += (d__1 = s[s_dim1 + 2], abs(d__1));
 | |
|     }
 | |
|     bnorm = (d__1 = p[p_dim1 + 1], abs(d__1));
 | |
|     work[1] = 0.;
 | |
|     work[*n + 1] = 0.;
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	temp = 0.;
 | |
| 	temp2 = 0.;
 | |
| 	if (s[j + (j - 1) * s_dim1] == 0.) {
 | |
| 	    iend = j - 1;
 | |
| 	} else {
 | |
| 	    iend = j - 2;
 | |
| 	}
 | |
| 	i__2 = iend;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
 | |
| 	    temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
 | |
| /* L30: */
 | |
| 	}
 | |
| 	work[j] = temp;
 | |
| 	work[*n + j] = temp2;
 | |
| /* Computing MIN */
 | |
| 	i__3 = j + 1;
 | |
| 	i__2 = f2cmin(i__3,*n);
 | |
| 	for (i__ = iend + 1; i__ <= i__2; ++i__) {
 | |
| 	    temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
 | |
| 	    temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
 | |
| /* L40: */
 | |
| 	}
 | |
| 	anorm = f2cmax(anorm,temp);
 | |
| 	bnorm = f2cmax(bnorm,temp2);
 | |
| /* L50: */
 | |
|     }
 | |
| 
 | |
|     ascale = 1. / f2cmax(anorm,safmin);
 | |
|     bscale = 1. / f2cmax(bnorm,safmin);
 | |
| 
 | |
| /*     Left eigenvectors */
 | |
| 
 | |
|     if (compl) {
 | |
| 	ieig = 0;
 | |
| 
 | |
| /*        Main loop over eigenvalues */
 | |
| 
 | |
| 	ilcplx = FALSE_;
 | |
| 	i__1 = *n;
 | |
| 	for (je = 1; je <= i__1; ++je) {
 | |
| 
 | |
| /*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
 | |
| /*           (b) this would be the second of a complex pair. */
 | |
| /*           Check for complex eigenvalue, so as to be sure of which */
 | |
| /*           entry(-ies) of SELECT to look at. */
 | |
| 
 | |
| 	    if (ilcplx) {
 | |
| 		ilcplx = FALSE_;
 | |
| 		goto L220;
 | |
| 	    }
 | |
| 	    nw = 1;
 | |
| 	    if (je < *n) {
 | |
| 		if (s[je + 1 + je * s_dim1] != 0.) {
 | |
| 		    ilcplx = TRUE_;
 | |
| 		    nw = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (ilall) {
 | |
| 		ilcomp = TRUE_;
 | |
| 	    } else if (ilcplx) {
 | |
| 		ilcomp = select[je] || select[je + 1];
 | |
| 	    } else {
 | |
| 		ilcomp = select[je];
 | |
| 	    }
 | |
| 	    if (! ilcomp) {
 | |
| 		goto L220;
 | |
| 	    }
 | |
| 
 | |
| /*           Decide if (a) singular pencil, (b) real eigenvalue, or */
 | |
| /*           (c) complex eigenvalue. */
 | |
| 
 | |
| 	    if (! ilcplx) {
 | |
| 		if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
 | |
| 			d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
 | |
| 
 | |
| /*                 Singular matrix pencil -- return unit eigenvector */
 | |
| 
 | |
| 		    ++ieig;
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vl[jr + ieig * vl_dim1] = 0.;
 | |
| /* L60: */
 | |
| 		    }
 | |
| 		    vl[ieig + ieig * vl_dim1] = 1.;
 | |
| 		    goto L220;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Clear vector */
 | |
| 
 | |
| 	    i__2 = nw * *n;
 | |
| 	    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		work[(*n << 1) + jr] = 0.;
 | |
| /* L70: */
 | |
| 	    }
 | |
| /*                                                 T */
 | |
| /*           Compute coefficients in  ( a A - b B )  y = 0 */
 | |
| /*              a  is  ACOEF */
 | |
| /*              b  is  BCOEFR + i*BCOEFI */
 | |
| 
 | |
| 	    if (! ilcplx) {
 | |
| 
 | |
| /*              Real eigenvalue */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4 
 | |
| 			= (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale, 
 | |
| 			d__3 = f2cmax(d__3,d__4);
 | |
| 		temp = 1. / f2cmax(d__3,safmin);
 | |
| 		salfar = temp * s[je + je * s_dim1] * ascale;
 | |
| 		sbeta = temp * p[je + je * p_dim1] * bscale;
 | |
| 		acoef = sbeta * ascale;
 | |
| 		bcoefr = salfar * bscale;
 | |
| 		bcoefi = 0.;
 | |
| 
 | |
| /*              Scale to avoid underflow */
 | |
| 
 | |
| 		scale = 1.;
 | |
| 		lsa = abs(sbeta) >= safmin && abs(acoef) < small;
 | |
| 		lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
 | |
| 		if (lsa) {
 | |
| 		    scale = small / abs(sbeta) * f2cmin(anorm,big);
 | |
| 		}
 | |
| 		if (lsb) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = scale, d__2 = small / abs(salfar) * f2cmin(bnorm,big);
 | |
| 		    scale = f2cmax(d__1,d__2);
 | |
| 		}
 | |
| 		if (lsa || lsb) {
 | |
| /* Computing MIN */
 | |
| /* Computing MAX */
 | |
| 		    d__3 = 1., d__4 = abs(acoef), d__3 = f2cmax(d__3,d__4), d__4 
 | |
| 			    = abs(bcoefr);
 | |
| 		    d__1 = scale, d__2 = 1. / (safmin * f2cmax(d__3,d__4));
 | |
| 		    scale = f2cmin(d__1,d__2);
 | |
| 		    if (lsa) {
 | |
| 			acoef = ascale * (scale * sbeta);
 | |
| 		    } else {
 | |
| 			acoef = scale * acoef;
 | |
| 		    }
 | |
| 		    if (lsb) {
 | |
| 			bcoefr = bscale * (scale * salfar);
 | |
| 		    } else {
 | |
| 			bcoefr = scale * bcoefr;
 | |
| 		    }
 | |
| 		}
 | |
| 		acoefa = abs(acoef);
 | |
| 		bcoefa = abs(bcoefr);
 | |
| 
 | |
| /*              First component is 1 */
 | |
| 
 | |
| 		work[(*n << 1) + je] = 1.;
 | |
| 		xmax = 1.;
 | |
| 	    } else {
 | |
| 
 | |
| /*              Complex eigenvalue */
 | |
| 
 | |
| 		d__1 = safmin * 100.;
 | |
| 		dlag2_(&s[je + je * s_dim1], lds, &p[je + je * p_dim1], ldp, &
 | |
| 			d__1, &acoef, &temp, &bcoefr, &temp2, &bcoefi);
 | |
| 		bcoefi = -bcoefi;
 | |
| 		if (bcoefi == 0.) {
 | |
| 		    *info = je;
 | |
| 		    return;
 | |
| 		}
 | |
| 
 | |
| /*              Scale to avoid over/underflow */
 | |
| 
 | |
| 		acoefa = abs(acoef);
 | |
| 		bcoefa = abs(bcoefr) + abs(bcoefi);
 | |
| 		scale = 1.;
 | |
| 		if (acoefa * ulp < safmin && acoefa >= safmin) {
 | |
| 		    scale = safmin / ulp / acoefa;
 | |
| 		}
 | |
| 		if (bcoefa * ulp < safmin && bcoefa >= safmin) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = scale, d__2 = safmin / ulp / bcoefa;
 | |
| 		    scale = f2cmax(d__1,d__2);
 | |
| 		}
 | |
| 		if (safmin * acoefa > ascale) {
 | |
| 		    scale = ascale / (safmin * acoefa);
 | |
| 		}
 | |
| 		if (safmin * bcoefa > bscale) {
 | |
| /* Computing MIN */
 | |
| 		    d__1 = scale, d__2 = bscale / (safmin * bcoefa);
 | |
| 		    scale = f2cmin(d__1,d__2);
 | |
| 		}
 | |
| 		if (scale != 1.) {
 | |
| 		    acoef = scale * acoef;
 | |
| 		    acoefa = abs(acoef);
 | |
| 		    bcoefr = scale * bcoefr;
 | |
| 		    bcoefi = scale * bcoefi;
 | |
| 		    bcoefa = abs(bcoefr) + abs(bcoefi);
 | |
| 		}
 | |
| 
 | |
| /*              Compute first two components of eigenvector */
 | |
| 
 | |
| 		temp = acoef * s[je + 1 + je * s_dim1];
 | |
| 		temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je * 
 | |
| 			p_dim1];
 | |
| 		temp2i = -bcoefi * p[je + je * p_dim1];
 | |
| 		if (abs(temp) > abs(temp2r) + abs(temp2i)) {
 | |
| 		    work[(*n << 1) + je] = 1.;
 | |
| 		    work[*n * 3 + je] = 0.;
 | |
| 		    work[(*n << 1) + je + 1] = -temp2r / temp;
 | |
| 		    work[*n * 3 + je + 1] = -temp2i / temp;
 | |
| 		} else {
 | |
| 		    work[(*n << 1) + je + 1] = 1.;
 | |
| 		    work[*n * 3 + je + 1] = 0.;
 | |
| 		    temp = acoef * s[je + (je + 1) * s_dim1];
 | |
| 		    work[(*n << 1) + je] = (bcoefr * p[je + 1 + (je + 1) * 
 | |
| 			    p_dim1] - acoef * s[je + 1 + (je + 1) * s_dim1]) /
 | |
| 			     temp;
 | |
| 		    work[*n * 3 + je] = bcoefi * p[je + 1 + (je + 1) * p_dim1]
 | |
| 			     / temp;
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 = 
 | |
| 			work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
 | |
| 			n << 1) + je + 1], abs(d__3)) + (d__4 = work[*n * 3 + 
 | |
| 			je + 1], abs(d__4));
 | |
| 		xmax = f2cmax(d__5,d__6);
 | |
| 	    }
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	    d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 = 
 | |
| 		    f2cmax(d__1,d__2);
 | |
| 	    dmin__ = f2cmax(d__1,safmin);
 | |
| 
 | |
| /*                                           T */
 | |
| /*           Triangular solve of  (a A - b B)  y = 0 */
 | |
| 
 | |
| /*                                   T */
 | |
| /*           (rowwise in  (a A - b B) , or columnwise in (a A - b B) ) */
 | |
| 
 | |
| 	    il2by2 = FALSE_;
 | |
| 
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = je + nw; j <= i__2; ++j) {
 | |
| 		if (il2by2) {
 | |
| 		    il2by2 = FALSE_;
 | |
| 		    goto L160;
 | |
| 		}
 | |
| 
 | |
| 		na = 1;
 | |
| 		bdiag[0] = p[j + j * p_dim1];
 | |
| 		if (j < *n) {
 | |
| 		    if (s[j + 1 + j * s_dim1] != 0.) {
 | |
| 			il2by2 = TRUE_;
 | |
| 			bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
 | |
| 			na = 2;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Check whether scaling is necessary for dot products */
 | |
| 
 | |
| 		xscale = 1. / f2cmax(1.,xmax);
 | |
| /* Computing MAX */
 | |
| 		d__1 = work[j], d__2 = work[*n + j], d__1 = f2cmax(d__1,d__2), 
 | |
| 			d__2 = acoefa * work[j] + bcoefa * work[*n + j];
 | |
| 		temp = f2cmax(d__1,d__2);
 | |
| 		if (il2by2) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = temp, d__2 = work[j + 1], d__1 = f2cmax(d__1,d__2), 
 | |
| 			    d__2 = work[*n + j + 1], d__1 = f2cmax(d__1,d__2), 
 | |
| 			    d__2 = acoefa * work[j + 1] + bcoefa * work[*n + 
 | |
| 			    j + 1];
 | |
| 		    temp = f2cmax(d__1,d__2);
 | |
| 		}
 | |
| 		if (temp > bignum * xscale) {
 | |
| 		    i__3 = nw - 1;
 | |
| 		    for (jw = 0; jw <= i__3; ++jw) {
 | |
| 			i__4 = j - 1;
 | |
| 			for (jr = je; jr <= i__4; ++jr) {
 | |
| 			    work[(jw + 2) * *n + jr] = xscale * work[(jw + 2) 
 | |
| 				    * *n + jr];
 | |
| /* L80: */
 | |
| 			}
 | |
| /* L90: */
 | |
| 		    }
 | |
| 		    xmax *= xscale;
 | |
| 		}
 | |
| 
 | |
| /*              Compute dot products */
 | |
| 
 | |
| /*                    j-1 */
 | |
| /*              SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k) */
 | |
| /*                    k=je */
 | |
| 
 | |
| /*              To reduce the op count, this is done as */
 | |
| 
 | |
| /*              _        j-1                  _        j-1 */
 | |
| /*              a*conjg( sum  S(k,j)*x(k) ) - b*conjg( sum  P(k,j)*x(k) ) */
 | |
| /*                       k=je                          k=je */
 | |
| 
 | |
| /*              which may cause underflow problems if A or B are close */
 | |
| /*              to underflow.  (E.g., less than SMALL.) */
 | |
| 
 | |
| 
 | |
| 		i__3 = nw;
 | |
| 		for (jw = 1; jw <= i__3; ++jw) {
 | |
| 		    i__4 = na;
 | |
| 		    for (ja = 1; ja <= i__4; ++ja) {
 | |
| 			sums[ja + (jw << 1) - 3] = 0.;
 | |
| 			sump[ja + (jw << 1) - 3] = 0.;
 | |
| 
 | |
| 			i__5 = j - 1;
 | |
| 			for (jr = je; jr <= i__5; ++jr) {
 | |
| 			    sums[ja + (jw << 1) - 3] += s[jr + (j + ja - 1) * 
 | |
| 				    s_dim1] * work[(jw + 1) * *n + jr];
 | |
| 			    sump[ja + (jw << 1) - 3] += p[jr + (j + ja - 1) * 
 | |
| 				    p_dim1] * work[(jw + 1) * *n + jr];
 | |
| /* L100: */
 | |
| 			}
 | |
| /* L110: */
 | |
| 		    }
 | |
| /* L120: */
 | |
| 		}
 | |
| 
 | |
| 		i__3 = na;
 | |
| 		for (ja = 1; ja <= i__3; ++ja) {
 | |
| 		    if (ilcplx) {
 | |
| 			sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
 | |
| 				ja - 1] - bcoefi * sump[ja + 1];
 | |
| 			sum[ja + 1] = -acoef * sums[ja + 1] + bcoefr * sump[
 | |
| 				ja + 1] + bcoefi * sump[ja - 1];
 | |
| 		    } else {
 | |
| 			sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
 | |
| 				ja - 1];
 | |
| 		    }
 | |
| /* L130: */
 | |
| 		}
 | |
| 
 | |
| /*                                  T */
 | |
| /*              Solve  ( a A - b B )  y = SUM(,) */
 | |
| /*              with scaling and perturbation of the denominator */
 | |
| 
 | |
| 		dlaln2_(&c_true, &na, &nw, &dmin__, &acoef, &s[j + j * s_dim1]
 | |
| 			, lds, bdiag, &bdiag[1], sum, &c__2, &bcoefr, &bcoefi,
 | |
| 			 &work[(*n << 1) + j], n, &scale, &temp, &iinfo);
 | |
| 		if (scale < 1.) {
 | |
| 		    i__3 = nw - 1;
 | |
| 		    for (jw = 0; jw <= i__3; ++jw) {
 | |
| 			i__4 = j - 1;
 | |
| 			for (jr = je; jr <= i__4; ++jr) {
 | |
| 			    work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
 | |
| 				     *n + jr];
 | |
| /* L140: */
 | |
| 			}
 | |
| /* L150: */
 | |
| 		    }
 | |
| 		    xmax = scale * xmax;
 | |
| 		}
 | |
| 		xmax = f2cmax(xmax,temp);
 | |
| L160:
 | |
| 		;
 | |
| 	    }
 | |
| 
 | |
| /*           Copy eigenvector to VL, back transforming if */
 | |
| /*           HOWMNY='B'. */
 | |
| 
 | |
| 	    ++ieig;
 | |
| 	    if (ilback) {
 | |
| 		i__2 = nw - 1;
 | |
| 		for (jw = 0; jw <= i__2; ++jw) {
 | |
| 		    i__3 = *n + 1 - je;
 | |
| 		    dgemv_("N", n, &i__3, &c_b34, &vl[je * vl_dim1 + 1], ldvl,
 | |
| 			     &work[(jw + 2) * *n + je], &c__1, &c_b36, &work[(
 | |
| 			    jw + 4) * *n + 1], &c__1);
 | |
| /* L170: */
 | |
| 		}
 | |
| 		dlacpy_(" ", n, &nw, &work[(*n << 2) + 1], n, &vl[je * 
 | |
| 			vl_dim1 + 1], ldvl);
 | |
| 		ibeg = 1;
 | |
| 	    } else {
 | |
| 		dlacpy_(" ", n, &nw, &work[(*n << 1) + 1], n, &vl[ieig * 
 | |
| 			vl_dim1 + 1], ldvl);
 | |
| 		ibeg = je;
 | |
| 	    }
 | |
| 
 | |
| /*           Scale eigenvector */
 | |
| 
 | |
| 	    xmax = 0.;
 | |
| 	    if (ilcplx) {
 | |
| 		i__2 = *n;
 | |
| 		for (j = ibeg; j <= i__2; ++j) {
 | |
| /* Computing MAX */
 | |
| 		    d__3 = xmax, d__4 = (d__1 = vl[j + ieig * vl_dim1], abs(
 | |
| 			    d__1)) + (d__2 = vl[j + (ieig + 1) * vl_dim1], 
 | |
| 			    abs(d__2));
 | |
| 		    xmax = f2cmax(d__3,d__4);
 | |
| /* L180: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = *n;
 | |
| 		for (j = ibeg; j <= i__2; ++j) {
 | |
| /* Computing MAX */
 | |
| 		    d__2 = xmax, d__3 = (d__1 = vl[j + ieig * vl_dim1], abs(
 | |
| 			    d__1));
 | |
| 		    xmax = f2cmax(d__2,d__3);
 | |
| /* L190: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    if (xmax > safmin) {
 | |
| 		xscale = 1. / xmax;
 | |
| 
 | |
| 		i__2 = nw - 1;
 | |
| 		for (jw = 0; jw <= i__2; ++jw) {
 | |
| 		    i__3 = *n;
 | |
| 		    for (jr = ibeg; jr <= i__3; ++jr) {
 | |
| 			vl[jr + (ieig + jw) * vl_dim1] = xscale * vl[jr + (
 | |
| 				ieig + jw) * vl_dim1];
 | |
| /* L200: */
 | |
| 		    }
 | |
| /* L210: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    ieig = ieig + nw - 1;
 | |
| 
 | |
| L220:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Right eigenvectors */
 | |
| 
 | |
|     if (compr) {
 | |
| 	ieig = im + 1;
 | |
| 
 | |
| /*        Main loop over eigenvalues */
 | |
| 
 | |
| 	ilcplx = FALSE_;
 | |
| 	for (je = *n; je >= 1; --je) {
 | |
| 
 | |
| /*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
 | |
| /*           (b) this would be the second of a complex pair. */
 | |
| /*           Check for complex eigenvalue, so as to be sure of which */
 | |
| /*           entry(-ies) of SELECT to look at -- if complex, SELECT(JE) */
 | |
| /*           or SELECT(JE-1). */
 | |
| /*           If this is a complex pair, the 2-by-2 diagonal block */
 | |
| /*           corresponding to the eigenvalue is in rows/columns JE-1:JE */
 | |
| 
 | |
| 	    if (ilcplx) {
 | |
| 		ilcplx = FALSE_;
 | |
| 		goto L500;
 | |
| 	    }
 | |
| 	    nw = 1;
 | |
| 	    if (je > 1) {
 | |
| 		if (s[je + (je - 1) * s_dim1] != 0.) {
 | |
| 		    ilcplx = TRUE_;
 | |
| 		    nw = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (ilall) {
 | |
| 		ilcomp = TRUE_;
 | |
| 	    } else if (ilcplx) {
 | |
| 		ilcomp = select[je] || select[je - 1];
 | |
| 	    } else {
 | |
| 		ilcomp = select[je];
 | |
| 	    }
 | |
| 	    if (! ilcomp) {
 | |
| 		goto L500;
 | |
| 	    }
 | |
| 
 | |
| /*           Decide if (a) singular pencil, (b) real eigenvalue, or */
 | |
| /*           (c) complex eigenvalue. */
 | |
| 
 | |
| 	    if (! ilcplx) {
 | |
| 		if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
 | |
| 			d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
 | |
| 
 | |
| /*                 Singular matrix pencil -- unit eigenvector */
 | |
| 
 | |
| 		    --ieig;
 | |
| 		    i__1 = *n;
 | |
| 		    for (jr = 1; jr <= i__1; ++jr) {
 | |
| 			vr[jr + ieig * vr_dim1] = 0.;
 | |
| /* L230: */
 | |
| 		    }
 | |
| 		    vr[ieig + ieig * vr_dim1] = 1.;
 | |
| 		    goto L500;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Clear vector */
 | |
| 
 | |
| 	    i__1 = nw - 1;
 | |
| 	    for (jw = 0; jw <= i__1; ++jw) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    work[(jw + 2) * *n + jr] = 0.;
 | |
| /* L240: */
 | |
| 		}
 | |
| /* L250: */
 | |
| 	    }
 | |
| 
 | |
| /*           Compute coefficients in  ( a A - b B ) x = 0 */
 | |
| /*              a  is  ACOEF */
 | |
| /*              b  is  BCOEFR + i*BCOEFI */
 | |
| 
 | |
| 	    if (! ilcplx) {
 | |
| 
 | |
| /*              Real eigenvalue */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4 
 | |
| 			= (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale, 
 | |
| 			d__3 = f2cmax(d__3,d__4);
 | |
| 		temp = 1. / f2cmax(d__3,safmin);
 | |
| 		salfar = temp * s[je + je * s_dim1] * ascale;
 | |
| 		sbeta = temp * p[je + je * p_dim1] * bscale;
 | |
| 		acoef = sbeta * ascale;
 | |
| 		bcoefr = salfar * bscale;
 | |
| 		bcoefi = 0.;
 | |
| 
 | |
| /*              Scale to avoid underflow */
 | |
| 
 | |
| 		scale = 1.;
 | |
| 		lsa = abs(sbeta) >= safmin && abs(acoef) < small;
 | |
| 		lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
 | |
| 		if (lsa) {
 | |
| 		    scale = small / abs(sbeta) * f2cmin(anorm,big);
 | |
| 		}
 | |
| 		if (lsb) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = scale, d__2 = small / abs(salfar) * f2cmin(bnorm,big);
 | |
| 		    scale = f2cmax(d__1,d__2);
 | |
| 		}
 | |
| 		if (lsa || lsb) {
 | |
| /* Computing MIN */
 | |
| /* Computing MAX */
 | |
| 		    d__3 = 1., d__4 = abs(acoef), d__3 = f2cmax(d__3,d__4), d__4 
 | |
| 			    = abs(bcoefr);
 | |
| 		    d__1 = scale, d__2 = 1. / (safmin * f2cmax(d__3,d__4));
 | |
| 		    scale = f2cmin(d__1,d__2);
 | |
| 		    if (lsa) {
 | |
| 			acoef = ascale * (scale * sbeta);
 | |
| 		    } else {
 | |
| 			acoef = scale * acoef;
 | |
| 		    }
 | |
| 		    if (lsb) {
 | |
| 			bcoefr = bscale * (scale * salfar);
 | |
| 		    } else {
 | |
| 			bcoefr = scale * bcoefr;
 | |
| 		    }
 | |
| 		}
 | |
| 		acoefa = abs(acoef);
 | |
| 		bcoefa = abs(bcoefr);
 | |
| 
 | |
| /*              First component is 1 */
 | |
| 
 | |
| 		work[(*n << 1) + je] = 1.;
 | |
| 		xmax = 1.;
 | |
| 
 | |
| /*              Compute contribution from column JE of A and B to sum */
 | |
| /*              (See "Further Details", above.) */
 | |
| 
 | |
| 		i__1 = je - 1;
 | |
| 		for (jr = 1; jr <= i__1; ++jr) {
 | |
| 		    work[(*n << 1) + jr] = bcoefr * p[jr + je * p_dim1] - 
 | |
| 			    acoef * s[jr + je * s_dim1];
 | |
| /* L260: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Complex eigenvalue */
 | |
| 
 | |
| 		d__1 = safmin * 100.;
 | |
| 		dlag2_(&s[je - 1 + (je - 1) * s_dim1], lds, &p[je - 1 + (je - 
 | |
| 			1) * p_dim1], ldp, &d__1, &acoef, &temp, &bcoefr, &
 | |
| 			temp2, &bcoefi);
 | |
| 		if (bcoefi == 0.) {
 | |
| 		    *info = je - 1;
 | |
| 		    return;
 | |
| 		}
 | |
| 
 | |
| /*              Scale to avoid over/underflow */
 | |
| 
 | |
| 		acoefa = abs(acoef);
 | |
| 		bcoefa = abs(bcoefr) + abs(bcoefi);
 | |
| 		scale = 1.;
 | |
| 		if (acoefa * ulp < safmin && acoefa >= safmin) {
 | |
| 		    scale = safmin / ulp / acoefa;
 | |
| 		}
 | |
| 		if (bcoefa * ulp < safmin && bcoefa >= safmin) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = scale, d__2 = safmin / ulp / bcoefa;
 | |
| 		    scale = f2cmax(d__1,d__2);
 | |
| 		}
 | |
| 		if (safmin * acoefa > ascale) {
 | |
| 		    scale = ascale / (safmin * acoefa);
 | |
| 		}
 | |
| 		if (safmin * bcoefa > bscale) {
 | |
| /* Computing MIN */
 | |
| 		    d__1 = scale, d__2 = bscale / (safmin * bcoefa);
 | |
| 		    scale = f2cmin(d__1,d__2);
 | |
| 		}
 | |
| 		if (scale != 1.) {
 | |
| 		    acoef = scale * acoef;
 | |
| 		    acoefa = abs(acoef);
 | |
| 		    bcoefr = scale * bcoefr;
 | |
| 		    bcoefi = scale * bcoefi;
 | |
| 		    bcoefa = abs(bcoefr) + abs(bcoefi);
 | |
| 		}
 | |
| 
 | |
| /*              Compute first two components of eigenvector */
 | |
| /*              and contribution to sums */
 | |
| 
 | |
| 		temp = acoef * s[je + (je - 1) * s_dim1];
 | |
| 		temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je * 
 | |
| 			p_dim1];
 | |
| 		temp2i = -bcoefi * p[je + je * p_dim1];
 | |
| 		if (abs(temp) >= abs(temp2r) + abs(temp2i)) {
 | |
| 		    work[(*n << 1) + je] = 1.;
 | |
| 		    work[*n * 3 + je] = 0.;
 | |
| 		    work[(*n << 1) + je - 1] = -temp2r / temp;
 | |
| 		    work[*n * 3 + je - 1] = -temp2i / temp;
 | |
| 		} else {
 | |
| 		    work[(*n << 1) + je - 1] = 1.;
 | |
| 		    work[*n * 3 + je - 1] = 0.;
 | |
| 		    temp = acoef * s[je - 1 + je * s_dim1];
 | |
| 		    work[(*n << 1) + je] = (bcoefr * p[je - 1 + (je - 1) * 
 | |
| 			    p_dim1] - acoef * s[je - 1 + (je - 1) * s_dim1]) /
 | |
| 			     temp;
 | |
| 		    work[*n * 3 + je] = bcoefi * p[je - 1 + (je - 1) * p_dim1]
 | |
| 			     / temp;
 | |
| 		}
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 = 
 | |
| 			work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
 | |
| 			n << 1) + je - 1], abs(d__3)) + (d__4 = work[*n * 3 + 
 | |
| 			je - 1], abs(d__4));
 | |
| 		xmax = f2cmax(d__5,d__6);
 | |
| 
 | |
| /*              Compute contribution from columns JE and JE-1 */
 | |
| /*              of A and B to the sums. */
 | |
| 
 | |
| 		creala = acoef * work[(*n << 1) + je - 1];
 | |
| 		cimaga = acoef * work[*n * 3 + je - 1];
 | |
| 		crealb = bcoefr * work[(*n << 1) + je - 1] - bcoefi * work[*n 
 | |
| 			* 3 + je - 1];
 | |
| 		cimagb = bcoefi * work[(*n << 1) + je - 1] + bcoefr * work[*n 
 | |
| 			* 3 + je - 1];
 | |
| 		cre2a = acoef * work[(*n << 1) + je];
 | |
| 		cim2a = acoef * work[*n * 3 + je];
 | |
| 		cre2b = bcoefr * work[(*n << 1) + je] - bcoefi * work[*n * 3 
 | |
| 			+ je];
 | |
| 		cim2b = bcoefi * work[(*n << 1) + je] + bcoefr * work[*n * 3 
 | |
| 			+ je];
 | |
| 		i__1 = je - 2;
 | |
| 		for (jr = 1; jr <= i__1; ++jr) {
 | |
| 		    work[(*n << 1) + jr] = -creala * s[jr + (je - 1) * s_dim1]
 | |
| 			     + crealb * p[jr + (je - 1) * p_dim1] - cre2a * s[
 | |
| 			    jr + je * s_dim1] + cre2b * p[jr + je * p_dim1];
 | |
| 		    work[*n * 3 + jr] = -cimaga * s[jr + (je - 1) * s_dim1] + 
 | |
| 			    cimagb * p[jr + (je - 1) * p_dim1] - cim2a * s[jr 
 | |
| 			    + je * s_dim1] + cim2b * p[jr + je * p_dim1];
 | |
| /* L270: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	    d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 = 
 | |
| 		    f2cmax(d__1,d__2);
 | |
| 	    dmin__ = f2cmax(d__1,safmin);
 | |
| 
 | |
| /*           Columnwise triangular solve of  (a A - b B)  x = 0 */
 | |
| 
 | |
| 	    il2by2 = FALSE_;
 | |
| 	    for (j = je - nw; j >= 1; --j) {
 | |
| 
 | |
| /*              If a 2-by-2 block, is in position j-1:j, wait until */
 | |
| /*              next iteration to process it (when it will be j:j+1) */
 | |
| 
 | |
| 		if (! il2by2 && j > 1) {
 | |
| 		    if (s[j + (j - 1) * s_dim1] != 0.) {
 | |
| 			il2by2 = TRUE_;
 | |
| 			goto L370;
 | |
| 		    }
 | |
| 		}
 | |
| 		bdiag[0] = p[j + j * p_dim1];
 | |
| 		if (il2by2) {
 | |
| 		    na = 2;
 | |
| 		    bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
 | |
| 		} else {
 | |
| 		    na = 1;
 | |
| 		}
 | |
| 
 | |
| /*              Compute x(j) (and x(j+1), if 2-by-2 block) */
 | |
| 
 | |
| 		dlaln2_(&c_false, &na, &nw, &dmin__, &acoef, &s[j + j * 
 | |
| 			s_dim1], lds, bdiag, &bdiag[1], &work[(*n << 1) + j], 
 | |
| 			n, &bcoefr, &bcoefi, sum, &c__2, &scale, &temp, &
 | |
| 			iinfo);
 | |
| 		if (scale < 1.) {
 | |
| 
 | |
| 		    i__1 = nw - 1;
 | |
| 		    for (jw = 0; jw <= i__1; ++jw) {
 | |
| 			i__2 = je;
 | |
| 			for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			    work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
 | |
| 				     *n + jr];
 | |
| /* L280: */
 | |
| 			}
 | |
| /* L290: */
 | |
| 		    }
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		d__1 = scale * xmax;
 | |
| 		xmax = f2cmax(d__1,temp);
 | |
| 
 | |
| 		i__1 = nw;
 | |
| 		for (jw = 1; jw <= i__1; ++jw) {
 | |
| 		    i__2 = na;
 | |
| 		    for (ja = 1; ja <= i__2; ++ja) {
 | |
| 			work[(jw + 1) * *n + j + ja - 1] = sum[ja + (jw << 1) 
 | |
| 				- 3];
 | |
| /* L300: */
 | |
| 		    }
 | |
| /* L310: */
 | |
| 		}
 | |
| 
 | |
| /*              w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
 | |
| 
 | |
| 		if (j > 1) {
 | |
| 
 | |
| /*                 Check whether scaling is necessary for sum. */
 | |
| 
 | |
| 		    xscale = 1. / f2cmax(1.,xmax);
 | |
| 		    temp = acoefa * work[j] + bcoefa * work[*n + j];
 | |
| 		    if (il2by2) {
 | |
| /* Computing MAX */
 | |
| 			d__1 = temp, d__2 = acoefa * work[j + 1] + bcoefa * 
 | |
| 				work[*n + j + 1];
 | |
| 			temp = f2cmax(d__1,d__2);
 | |
| 		    }
 | |
| /* Computing MAX */
 | |
| 		    d__1 = f2cmax(temp,acoefa);
 | |
| 		    temp = f2cmax(d__1,bcoefa);
 | |
| 		    if (temp > bignum * xscale) {
 | |
| 
 | |
| 			i__1 = nw - 1;
 | |
| 			for (jw = 0; jw <= i__1; ++jw) {
 | |
| 			    i__2 = je;
 | |
| 			    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 				work[(jw + 2) * *n + jr] = xscale * work[(jw 
 | |
| 					+ 2) * *n + jr];
 | |
| /* L320: */
 | |
| 			    }
 | |
| /* L330: */
 | |
| 			}
 | |
| 			xmax *= xscale;
 | |
| 		    }
 | |
| 
 | |
| /*                 Compute the contributions of the off-diagonals of */
 | |
| /*                 column j (and j+1, if 2-by-2 block) of A and B to the */
 | |
| /*                 sums. */
 | |
| 
 | |
| 
 | |
| 		    i__1 = na;
 | |
| 		    for (ja = 1; ja <= i__1; ++ja) {
 | |
| 			if (ilcplx) {
 | |
| 			    creala = acoef * work[(*n << 1) + j + ja - 1];
 | |
| 			    cimaga = acoef * work[*n * 3 + j + ja - 1];
 | |
| 			    crealb = bcoefr * work[(*n << 1) + j + ja - 1] - 
 | |
| 				    bcoefi * work[*n * 3 + j + ja - 1];
 | |
| 			    cimagb = bcoefi * work[(*n << 1) + j + ja - 1] + 
 | |
| 				    bcoefr * work[*n * 3 + j + ja - 1];
 | |
| 			    i__2 = j - 1;
 | |
| 			    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 				work[(*n << 1) + jr] = work[(*n << 1) + jr] - 
 | |
| 					creala * s[jr + (j + ja - 1) * s_dim1]
 | |
| 					 + crealb * p[jr + (j + ja - 1) * 
 | |
| 					p_dim1];
 | |
| 				work[*n * 3 + jr] = work[*n * 3 + jr] - 
 | |
| 					cimaga * s[jr + (j + ja - 1) * s_dim1]
 | |
| 					 + cimagb * p[jr + (j + ja - 1) * 
 | |
| 					p_dim1];
 | |
| /* L340: */
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    creala = acoef * work[(*n << 1) + j + ja - 1];
 | |
| 			    crealb = bcoefr * work[(*n << 1) + j + ja - 1];
 | |
| 			    i__2 = j - 1;
 | |
| 			    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 				work[(*n << 1) + jr] = work[(*n << 1) + jr] - 
 | |
| 					creala * s[jr + (j + ja - 1) * s_dim1]
 | |
| 					 + crealb * p[jr + (j + ja - 1) * 
 | |
| 					p_dim1];
 | |
| /* L350: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L360: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		il2by2 = FALSE_;
 | |
| L370:
 | |
| 		;
 | |
| 	    }
 | |
| 
 | |
| /*           Copy eigenvector to VR, back transforming if */
 | |
| /*           HOWMNY='B'. */
 | |
| 
 | |
| 	    ieig -= nw;
 | |
| 	    if (ilback) {
 | |
| 
 | |
| 		i__1 = nw - 1;
 | |
| 		for (jw = 0; jw <= i__1; ++jw) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			work[(jw + 4) * *n + jr] = work[(jw + 2) * *n + 1] * 
 | |
| 				vr[jr + vr_dim1];
 | |
| /* L380: */
 | |
| 		    }
 | |
| 
 | |
| /*                 A series of compiler directives to defeat */
 | |
| /*                 vectorization for the next loop */
 | |
| 
 | |
| 
 | |
| 		    i__2 = je;
 | |
| 		    for (jc = 2; jc <= i__2; ++jc) {
 | |
| 			i__3 = *n;
 | |
| 			for (jr = 1; jr <= i__3; ++jr) {
 | |
| 			    work[(jw + 4) * *n + jr] += work[(jw + 2) * *n + 
 | |
| 				    jc] * vr[jr + jc * vr_dim1];
 | |
| /* L390: */
 | |
| 			}
 | |
| /* L400: */
 | |
| 		    }
 | |
| /* L410: */
 | |
| 		}
 | |
| 
 | |
| 		i__1 = nw - 1;
 | |
| 		for (jw = 0; jw <= i__1; ++jw) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 4) * *n + 
 | |
| 				jr];
 | |
| /* L420: */
 | |
| 		    }
 | |
| /* L430: */
 | |
| 		}
 | |
| 
 | |
| 		iend = *n;
 | |
| 	    } else {
 | |
| 		i__1 = nw - 1;
 | |
| 		for (jw = 0; jw <= i__1; ++jw) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 2) * *n + 
 | |
| 				jr];
 | |
| /* L440: */
 | |
| 		    }
 | |
| /* L450: */
 | |
| 		}
 | |
| 
 | |
| 		iend = je;
 | |
| 	    }
 | |
| 
 | |
| /*           Scale eigenvector */
 | |
| 
 | |
| 	    xmax = 0.;
 | |
| 	    if (ilcplx) {
 | |
| 		i__1 = iend;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MAX */
 | |
| 		    d__3 = xmax, d__4 = (d__1 = vr[j + ieig * vr_dim1], abs(
 | |
| 			    d__1)) + (d__2 = vr[j + (ieig + 1) * vr_dim1], 
 | |
| 			    abs(d__2));
 | |
| 		    xmax = f2cmax(d__3,d__4);
 | |
| /* L460: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = iend;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MAX */
 | |
| 		    d__2 = xmax, d__3 = (d__1 = vr[j + ieig * vr_dim1], abs(
 | |
| 			    d__1));
 | |
| 		    xmax = f2cmax(d__2,d__3);
 | |
| /* L470: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    if (xmax > safmin) {
 | |
| 		xscale = 1. / xmax;
 | |
| 		i__1 = nw - 1;
 | |
| 		for (jw = 0; jw <= i__1; ++jw) {
 | |
| 		    i__2 = iend;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vr[jr + (ieig + jw) * vr_dim1] = xscale * vr[jr + (
 | |
| 				ieig + jw) * vr_dim1];
 | |
| /* L480: */
 | |
| 		    }
 | |
| /* L490: */
 | |
| 		}
 | |
| 	    }
 | |
| L500:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DTGEVC */
 | |
| 
 | |
| } /* dtgevc_ */
 | |
| 
 |