582 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			582 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSTEVR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
 | |
| *                          M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | |
| *                          LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE
 | |
| *       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | |
| *       DOUBLE PRECISION   ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSTEVR computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a real symmetric tridiagonal matrix T.  Eigenvalues and
 | |
| *> eigenvectors can be selected by specifying either a range of values
 | |
| *> or a range of indices for the desired eigenvalues.
 | |
| *>
 | |
| *> Whenever possible, DSTEVR calls DSTEMR to compute the
 | |
| *> eigenspectrum using Relatively Robust Representations.  DSTEMR
 | |
| *> computes eigenvalues by the dqds algorithm, while orthogonal
 | |
| *> eigenvectors are computed from various "good" L D L^T representations
 | |
| *> (also known as Relatively Robust Representations). Gram-Schmidt
 | |
| *> orthogonalization is avoided as far as possible. More specifically,
 | |
| *> the various steps of the algorithm are as follows. For the i-th
 | |
| *> unreduced block of T,
 | |
| *>    (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
 | |
| *>         is a relatively robust representation,
 | |
| *>    (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
 | |
| *>        relative accuracy by the dqds algorithm,
 | |
| *>    (c) If there is a cluster of close eigenvalues, "choose" sigma_i
 | |
| *>        close to the cluster, and go to step (a),
 | |
| *>    (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
 | |
| *>        compute the corresponding eigenvector by forming a
 | |
| *>        rank-revealing twisted factorization.
 | |
| *> The desired accuracy of the output can be specified by the input
 | |
| *> parameter ABSTOL.
 | |
| *>
 | |
| *> For more details, see "A new O(n^2) algorithm for the symmetric
 | |
| *> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
 | |
| *> Computer Science Division Technical Report No. UCB//CSD-97-971,
 | |
| *> UC Berkeley, May 1997.
 | |
| *>
 | |
| *>
 | |
| *> Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
 | |
| *> on machines which conform to the ieee-754 floating point standard.
 | |
| *> DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
 | |
| *> when partial spectrum requests are made.
 | |
| *>
 | |
| *> Normal execution of DSTEMR may create NaNs and infinities and
 | |
| *> hence may abort due to a floating point exception in environments
 | |
| *> which do not handle NaNs and infinities in the ieee standard default
 | |
| *> manner.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found.
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found.
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
 | |
| *>          DSTEIN are called
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the n diagonal elements of the tridiagonal matrix
 | |
| *>          A.
 | |
| *>          On exit, D may be multiplied by a constant factor chosen
 | |
| *>          to avoid over/underflow in computing the eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (max(1,N-1))
 | |
| *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix A in elements 1 to N-1 of E.
 | |
| *>          On exit, E may be multiplied by a constant factor chosen
 | |
| *>          to avoid over/underflow in computing the eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION
 | |
| *>          If RANGE='V', the lower bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is DOUBLE PRECISION
 | |
| *>          If RANGE='V', the upper bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          smallest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          largest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is DOUBLE PRECISION
 | |
| *>          The absolute error tolerance for the eigenvalues.
 | |
| *>          An approximate eigenvalue is accepted as converged
 | |
| *>          when it is determined to lie in an interval [a,b]
 | |
| *>          of width less than or equal to
 | |
| *>
 | |
| *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | |
| *>
 | |
| *>          where EPS is the machine precision.  If ABSTOL is less than
 | |
| *>          or equal to zero, then  EPS*|T|  will be used in its place,
 | |
| *>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | |
| *>          by reducing A to tridiagonal form.
 | |
| *>
 | |
| *>          See "Computing Small Singular Values of Bidiagonal Matrices
 | |
| *>          with Guaranteed High Relative Accuracy," by Demmel and
 | |
| *>          Kahan, LAPACK Working Note #3.
 | |
| *>
 | |
| *>          If high relative accuracy is important, set ABSTOL to
 | |
| *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
 | |
| *>          eigenvalues are computed to high relative accuracy when
 | |
| *>          possible in future releases.  The current code does not
 | |
| *>          make any guarantees about high relative accuracy, but
 | |
| *>          future releases will. See J. Barlow and J. Demmel,
 | |
| *>          "Computing Accurate Eigensystems of Scaled Diagonally
 | |
| *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
 | |
| *>          of which matrices define their eigenvalues to high relative
 | |
| *>          accuracy.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The first M elements contain the selected eigenvalues in
 | |
| *>          ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix A
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ISUPPZ
 | |
| *> \verbatim
 | |
| *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
 | |
| *>          The support of the eigenvectors in Z, i.e., the indices
 | |
| *>          indicating the nonzero elements in Z. The i-th eigenvector
 | |
| *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
 | |
| *>          ISUPPZ( 2*i ).
 | |
| *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal (and
 | |
| *>          minimal) LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,20*N).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal (and
 | |
| *>          minimal) LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  Internal error
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHEReigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Inderjit Dhillon, IBM Almaden, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *>     Ken Stanley, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
 | |
|      $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | |
|      $                   LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE
 | |
|       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | |
|       DOUBLE PRECISION   ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
 | |
|      $                   TRYRAC
 | |
|       CHARACTER          ORDER
 | |
|       INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
 | |
|      $                   INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
 | |
|      $                   NSPLIT
 | |
|       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
 | |
|      $                   TMP1, TNRM, VLL, VUU
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
 | |
|      $                   DSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IEEEOK = ILAENV( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
| *
 | |
|       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
 | |
|       LWMIN = MAX( 1, 20*N )
 | |
|       LIWMIN = MAX( 1, 10*N )
 | |
| *
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE
 | |
|          IF( VALEIG ) THEN
 | |
|             IF( N.GT.0 .AND. VU.LE.VL )
 | |
|      $         INFO = -7
 | |
|          ELSE IF( INDEIG ) THEN
 | |
|             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | |
|                INFO = -8
 | |
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | |
|                INFO = -9
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|             INFO = -14
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -17
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -19
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSTEVR', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ALLEIG .OR. INDEIG ) THEN
 | |
|             M = 1
 | |
|             W( 1 ) = D( 1 )
 | |
|          ELSE
 | |
|             IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
 | |
|                M = 1
 | |
|                W( 1 ) = D( 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTZ )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | |
| *
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ISCALE = 0
 | |
|       IF( VALEIG ) THEN
 | |
|          VLL = VL
 | |
|          VUU = VU
 | |
|       END IF
 | |
| *
 | |
|       TNRM = DLANST( 'M', N, D, E )
 | |
|       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / TNRM
 | |
|       ELSE IF( TNRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / TNRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          CALL DSCAL( N, SIGMA, D, 1 )
 | |
|          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
 | |
|          IF( VALEIG ) THEN
 | |
|             VLL = VL*SIGMA
 | |
|             VUU = VU*SIGMA
 | |
|          END IF
 | |
|       END IF
 | |
| 
 | |
| *     Initialize indices into workspaces.  Note: These indices are used only
 | |
| *     if DSTERF or DSTEMR fail.
 | |
| 
 | |
| *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
 | |
| *     stores the block indices of each of the M<=N eigenvalues.
 | |
|       INDIBL = 1
 | |
| *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
 | |
| *     stores the starting and finishing indices of each block.
 | |
|       INDISP = INDIBL + N
 | |
| *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
 | |
| *     that corresponding to eigenvectors that fail to converge in
 | |
| *     DSTEIN.  This information is discarded; if any fail, the driver
 | |
| *     returns INFO > 0.
 | |
|       INDIFL = INDISP + N
 | |
| *     INDIWO is the offset of the remaining integer workspace.
 | |
|       INDIWO = INDISP + N
 | |
| *
 | |
| *     If all eigenvalues are desired, then
 | |
| *     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then
 | |
| *     try DSTEBZ.
 | |
| *
 | |
| *
 | |
|       TEST = .FALSE.
 | |
|       IF( INDEIG ) THEN
 | |
|          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
 | |
|             TEST = .TRUE.
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
 | |
|          CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
 | |
|          IF( .NOT.WANTZ ) THEN
 | |
|             CALL DCOPY( N, D, 1, W, 1 )
 | |
|             CALL DSTERF( N, W, WORK, INFO )
 | |
|          ELSE
 | |
|             CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
 | |
|             IF (ABSTOL .LE. TWO*N*EPS) THEN
 | |
|                TRYRAC = .TRUE.
 | |
|             ELSE
 | |
|                TRYRAC = .FALSE.
 | |
|             END IF
 | |
|             CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
 | |
|      $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
 | |
|      $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
 | |
| *
 | |
|          END IF
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             M = N
 | |
|             GO TO 10
 | |
|          END IF
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          ORDER = 'B'
 | |
|       ELSE
 | |
|          ORDER = 'E'
 | |
|       END IF
 | |
| 
 | |
|       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
 | |
|      $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
 | |
|      $             IWORK( INDIWO ), INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
 | |
|      $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
 | |
|      $                INFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|    10 CONTINUE
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             IMAX = M
 | |
|          ELSE
 | |
|             IMAX = INFO - 1
 | |
|          END IF
 | |
|          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     If eigenvalues are not in order, then sort them, along with
 | |
| *     eigenvectors.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          DO 30 J = 1, M - 1
 | |
|             I = 0
 | |
|             TMP1 = W( J )
 | |
|             DO 20 JJ = J + 1, M
 | |
|                IF( W( JJ ).LT.TMP1 ) THEN
 | |
|                   I = JJ
 | |
|                   TMP1 = W( JJ )
 | |
|                END IF
 | |
|    20       CONTINUE
 | |
| *
 | |
|             IF( I.NE.0 ) THEN
 | |
|                ITMP1 = IWORK( I )
 | |
|                W( I ) = W( J )
 | |
|                IWORK( I ) = IWORK( J )
 | |
|                W( J ) = TMP1
 | |
|                IWORK( J ) = ITMP1
 | |
|                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *      Causes problems with tests 19 & 20:
 | |
| *      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
 | |
| *
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSTEVR
 | |
| *
 | |
|       END
 |