294 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSTEVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 | |
| *                          LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ
 | |
| *       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> real symmetric tridiagonal matrix. If eigenvectors are desired, it
 | |
| *> uses a divide and conquer algorithm.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the n diagonal elements of the tridiagonal matrix
 | |
| *>          A.
 | |
| *>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix A, stored in elements 1 to N-1 of E.
 | |
| *>          On exit, the contents of E are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 | |
| *>          eigenvectors of the matrix A, with the i-th column of Z
 | |
| *>          holding the eigenvector associated with D(i).
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array,
 | |
| *>                                         dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1.
 | |
| *>          If JOBZ  = 'V' and N > 1 then LWORK must be at least
 | |
| *>                         ( 1 + 4*N + N**2 ).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1.
 | |
| *>          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the algorithm failed to converge; i
 | |
| *>                off-diagonal elements of E did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 | |
|      $                   LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ
 | |
|       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, WANTZ
 | |
|       INTEGER            ISCALE, LIWMIN, LWMIN
 | |
|       DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
 | |
|      $                   TNRM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST
 | |
|       EXTERNAL           LSAME, DLAMCH, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSCAL, DSTEDC, DSTERF, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       LIWMIN = 1
 | |
|       LWMIN = 1
 | |
|       IF( N.GT.1 .AND. WANTZ ) THEN
 | |
|          LWMIN = 1 + 4*N + N**2
 | |
|          LIWMIN = 3 + 5*N
 | |
|       END IF
 | |
| *
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -8
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSTEVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( WANTZ )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = SQRT( BIGNUM )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ISCALE = 0
 | |
|       TNRM = DLANST( 'M', N, D, E )
 | |
|       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / TNRM
 | |
|       ELSE IF( TNRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / TNRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          CALL DSCAL( N, SIGMA, D, 1 )
 | |
|          CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     For eigenvalues only, call DSTERF.  For eigenvalues and
 | |
| *     eigenvectors, call DSTEDC.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL DSTERF( N, D, E, INFO )
 | |
|       ELSE
 | |
|          CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
 | |
|      $                INFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|       IF( ISCALE.EQ.1 )
 | |
|      $   CALL DSCAL( N, ONE / SIGMA, D, 1 )
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSTEVD
 | |
| *
 | |
|       END
 |