298 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSPTRD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSPTRD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   AP( * ), D( * ), E( * ), TAU( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSPTRD reduces a real symmetric matrix A stored in packed form to
 | |
| *> symmetric tridiagonal form T by an orthogonal similarity
 | |
| *> transformation: Q**T * A * Q = T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the symmetric matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
 | |
| *>          of A are overwritten by the corresponding elements of the
 | |
| *>          tridiagonal matrix T, and the elements above the first
 | |
| *>          superdiagonal, with the array TAU, represent the orthogonal
 | |
| *>          matrix Q as a product of elementary reflectors; if UPLO
 | |
| *>          = 'L', the diagonal and first subdiagonal of A are over-
 | |
| *>          written by the corresponding elements of the tridiagonal
 | |
| *>          matrix T, and the elements below the first subdiagonal, with
 | |
| *>          the array TAU, represent the orthogonal matrix Q as a product
 | |
| *>          of elementary reflectors. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal elements of the tridiagonal matrix T:
 | |
| *>          D(i) = A(i,i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The off-diagonal elements of the tridiagonal matrix T:
 | |
| *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(n-1) . . . H(2) H(1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
 | |
| *>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
 | |
| *>
 | |
| *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(n-1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**T
 | |
| *>
 | |
| *>  where tau is a real scalar, and v is a real vector with
 | |
| *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
 | |
| *>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AP( * ), D( * ), E( * ), TAU( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO, HALF
 | |
|       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0,
 | |
|      $                   HALF = 1.0D0 / 2.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, I1, I1I1, II
 | |
|       DOUBLE PRECISION   ALPHA, TAUI
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DLARFG, DSPMV, DSPR2, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DDOT
 | |
|       EXTERNAL           LSAME, DDOT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSPTRD', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Reduce the upper triangle of A.
 | |
| *        I1 is the index in AP of A(1,I+1).
 | |
| *
 | |
|          I1 = N*( N-1 ) / 2 + 1
 | |
|          DO 10 I = N - 1, 1, -1
 | |
| *
 | |
| *           Generate elementary reflector H(i) = I - tau * v * v**T
 | |
| *           to annihilate A(1:i-1,i+1)
 | |
| *
 | |
|             CALL DLARFG( I, AP( I1+I-1 ), AP( I1 ), 1, TAUI )
 | |
|             E( I ) = AP( I1+I-1 )
 | |
| *
 | |
|             IF( TAUI.NE.ZERO ) THEN
 | |
| *
 | |
| *              Apply H(i) from both sides to A(1:i,1:i)
 | |
| *
 | |
|                AP( I1+I-1 ) = ONE
 | |
| *
 | |
| *              Compute  y := tau * A * v  storing y in TAU(1:i)
 | |
| *
 | |
|                CALL DSPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
 | |
|      $                     1 )
 | |
| *
 | |
| *              Compute  w := y - 1/2 * tau * (y**T *v) * v
 | |
| *
 | |
|                ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, AP( I1 ), 1 )
 | |
|                CALL DAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
 | |
| *
 | |
| *              Apply the transformation as a rank-2 update:
 | |
| *                 A := A - v * w**T - w * v**T
 | |
| *
 | |
|                CALL DSPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
 | |
| *
 | |
|                AP( I1+I-1 ) = E( I )
 | |
|             END IF
 | |
|             D( I+1 ) = AP( I1+I )
 | |
|             TAU( I ) = TAUI
 | |
|             I1 = I1 - I
 | |
|    10    CONTINUE
 | |
|          D( 1 ) = AP( 1 )
 | |
|       ELSE
 | |
| *
 | |
| *        Reduce the lower triangle of A. II is the index in AP of
 | |
| *        A(i,i) and I1I1 is the index of A(i+1,i+1).
 | |
| *
 | |
|          II = 1
 | |
|          DO 20 I = 1, N - 1
 | |
|             I1I1 = II + N - I + 1
 | |
| *
 | |
| *           Generate elementary reflector H(i) = I - tau * v * v**T
 | |
| *           to annihilate A(i+2:n,i)
 | |
| *
 | |
|             CALL DLARFG( N-I, AP( II+1 ), AP( II+2 ), 1, TAUI )
 | |
|             E( I ) = AP( II+1 )
 | |
| *
 | |
|             IF( TAUI.NE.ZERO ) THEN
 | |
| *
 | |
| *              Apply H(i) from both sides to A(i+1:n,i+1:n)
 | |
| *
 | |
|                AP( II+1 ) = ONE
 | |
| *
 | |
| *              Compute  y := tau * A * v  storing y in TAU(i:n-1)
 | |
| *
 | |
|                CALL DSPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
 | |
|      $                     ZERO, TAU( I ), 1 )
 | |
| *
 | |
| *              Compute  w := y - 1/2 * tau * (y**T *v) * v
 | |
| *
 | |
|                ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, AP( II+1 ),
 | |
|      $                 1 )
 | |
|                CALL DAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
 | |
| *
 | |
| *              Apply the transformation as a rank-2 update:
 | |
| *                 A := A - v * w**T - w * v**T
 | |
| *
 | |
|                CALL DSPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
 | |
|      $                     AP( I1I1 ) )
 | |
| *
 | |
|                AP( II+1 ) = E( I )
 | |
|             END IF
 | |
|             D( I ) = AP( II )
 | |
|             TAU( I ) = TAUI
 | |
|             II = I1I1
 | |
|    20    CONTINUE
 | |
|          D( N ) = AP( II )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSPTRD
 | |
| *
 | |
|       END
 |