431 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			431 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DSGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSGESV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsgesv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsgesv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsgesv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
 | |
| *                          SWORK, ITER, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               SWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
 | |
| *      $                   X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSGESV computes the solution to a real system of linear equations
 | |
| *>    A * X = B,
 | |
| *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
 | |
| *>
 | |
| *> DSGESV first attempts to factorize the matrix in SINGLE PRECISION
 | |
| *> and use this factorization within an iterative refinement procedure
 | |
| *> to produce a solution with DOUBLE PRECISION normwise backward error
 | |
| *> quality (see below). If the approach fails the method switches to a
 | |
| *> DOUBLE PRECISION factorization and solve.
 | |
| *>
 | |
| *> The iterative refinement is not going to be a winning strategy if
 | |
| *> the ratio SINGLE PRECISION performance over DOUBLE PRECISION
 | |
| *> performance is too small. A reasonable strategy should take the
 | |
| *> number of right-hand sides and the size of the matrix into account.
 | |
| *> This might be done with a call to ILAENV in the future. Up to now, we
 | |
| *> always try iterative refinement.
 | |
| *>
 | |
| *> The iterative refinement process is stopped if
 | |
| *>     ITER > ITERMAX
 | |
| *> or for all the RHS we have:
 | |
| *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
 | |
| *> where
 | |
| *>     o ITER is the number of the current iteration in the iterative
 | |
| *>       refinement process
 | |
| *>     o RNRM is the infinity-norm of the residual
 | |
| *>     o XNRM is the infinity-norm of the solution
 | |
| *>     o ANRM is the infinity-operator-norm of the matrix A
 | |
| *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
 | |
| *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
 | |
| *> respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of linear equations, i.e., the order of the
 | |
| *>          matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array,
 | |
| *>          dimension (LDA,N)
 | |
| *>          On entry, the N-by-N coefficient matrix A.
 | |
| *>          On exit, if iterative refinement has been successfully used
 | |
| *>          (INFO = 0 and ITER >= 0, see description below), then A is
 | |
| *>          unchanged, if double precision factorization has been used
 | |
| *>          (INFO = 0 and ITER < 0, see description below), then the
 | |
| *>          array A contains the factors L and U from the factorization
 | |
| *>          A = P*L*U; the unit diagonal elements of L are not stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices that define the permutation matrix P;
 | |
| *>          row i of the matrix was interchanged with row IPIV(i).
 | |
| *>          Corresponds either to the single precision factorization
 | |
| *>          (if INFO = 0 and ITER >= 0) or the double precision
 | |
| *>          factorization (if INFO = 0 and ITER < 0).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          The N-by-NRHS right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          If INFO = 0, the N-by-NRHS solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N,NRHS)
 | |
| *>          This array is used to hold the residual vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SWORK
 | |
| *> \verbatim
 | |
| *>          SWORK is REAL array, dimension (N*(N+NRHS))
 | |
| *>          This array is used to use the single precision matrix and the
 | |
| *>          right-hand sides or solutions in single precision.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ITER
 | |
| *> \verbatim
 | |
| *>          ITER is INTEGER
 | |
| *>          < 0: iterative refinement has failed, double precision
 | |
| *>               factorization has been performed
 | |
| *>               -1 : the routine fell back to full precision for
 | |
| *>                    implementation- or machine-specific reasons
 | |
| *>               -2 : narrowing the precision induced an overflow,
 | |
| *>                    the routine fell back to full precision
 | |
| *>               -3 : failure of SGETRF
 | |
| *>               -31: stop the iterative refinement after the 30th
 | |
| *>                    iterations
 | |
| *>          > 0: iterative refinement has been successfully used.
 | |
| *>               Returns the number of iterations
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is
 | |
| *>                exactly zero.  The factorization has been completed,
 | |
| *>                but the factor U is exactly singular, so the solution
 | |
| *>                could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
 | |
|      $                   SWORK, ITER, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               SWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
 | |
|      $                   X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       LOGICAL            DOITREF
 | |
|       PARAMETER          ( DOITREF = .TRUE. )
 | |
| *
 | |
|       INTEGER            ITERMAX
 | |
|       PARAMETER          ( ITERMAX = 30 )
 | |
| *
 | |
|       DOUBLE PRECISION   BWDMAX
 | |
|       PARAMETER          ( BWDMAX = 1.0E+00 )
 | |
| *
 | |
|       DOUBLE PRECISION   NEGONE, ONE
 | |
|       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IITER, PTSA, PTSX
 | |
|       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
 | |
| *
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DGEMM, DLACPY, DLAG2S, DGETRF, DGETRS,
 | |
|      $                   SGETRF, SGETRS, SLAG2D, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE
 | |
|       EXTERNAL           IDAMAX, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       ITER = 0
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSGESV', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if (N.EQ.0).
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Skip single precision iterative refinement if a priori slower
 | |
| *     than double precision factorization.
 | |
| *
 | |
|       IF( .NOT.DOITREF ) THEN
 | |
|          ITER = -1
 | |
|          GO TO 40
 | |
|       END IF
 | |
| *
 | |
| *     Compute some constants.
 | |
| *
 | |
|       ANRM = DLANGE( 'I', N, N, A, LDA, WORK )
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
 | |
| *
 | |
| *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
 | |
| *
 | |
|       PTSA = 1
 | |
|       PTSX = PTSA + N*N
 | |
| *
 | |
| *     Convert B from double precision to single precision and store the
 | |
| *     result in SX.
 | |
| *
 | |
|       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          ITER = -2
 | |
|          GO TO 40
 | |
|       END IF
 | |
| *
 | |
| *     Convert A from double precision to single precision and store the
 | |
| *     result in SA.
 | |
| *
 | |
|       CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO )
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          ITER = -2
 | |
|          GO TO 40
 | |
|       END IF
 | |
| *
 | |
| *     Compute the LU factorization of SA.
 | |
| *
 | |
|       CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          ITER = -3
 | |
|          GO TO 40
 | |
|       END IF
 | |
| *
 | |
| *     Solve the system SA*SX = SB.
 | |
| *
 | |
|       CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
 | |
|      $             SWORK( PTSX ), N, INFO )
 | |
| *
 | |
| *     Convert SX back to double precision
 | |
| *
 | |
|       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
 | |
| *
 | |
| *     Compute R = B - AX (R is WORK).
 | |
| *
 | |
|       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
 | |
| *
 | |
|       CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
 | |
|      $            LDA, X, LDX, ONE, WORK, N )
 | |
| *
 | |
| *     Check whether the NRHS normwise backward errors satisfy the
 | |
| *     stopping criterion. If yes, set ITER=0 and return.
 | |
| *
 | |
|       DO I = 1, NRHS
 | |
|          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
 | |
|          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
 | |
|          IF( RNRM.GT.XNRM*CTE )
 | |
|      $      GO TO 10
 | |
|       END DO
 | |
| *
 | |
| *     If we are here, the NRHS normwise backward errors satisfy the
 | |
| *     stopping criterion. We are good to exit.
 | |
| *
 | |
|       ITER = 0
 | |
|       RETURN
 | |
| *
 | |
|    10 CONTINUE
 | |
| *
 | |
|       DO 30 IITER = 1, ITERMAX
 | |
| *
 | |
| *        Convert R (in WORK) from double precision to single precision
 | |
| *        and store the result in SX.
 | |
| *
 | |
|          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
 | |
| *
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             ITER = -2
 | |
|             GO TO 40
 | |
|          END IF
 | |
| *
 | |
| *        Solve the system SA*SX = SR.
 | |
| *
 | |
|          CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
 | |
|      $                SWORK( PTSX ), N, INFO )
 | |
| *
 | |
| *        Convert SX back to double precision and update the current
 | |
| *        iterate.
 | |
| *
 | |
|          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
 | |
| *
 | |
|          DO I = 1, NRHS
 | |
|             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
 | |
|          END DO
 | |
| *
 | |
| *        Compute R = B - AX (R is WORK).
 | |
| *
 | |
|          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
 | |
| *
 | |
|          CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
 | |
|      $               A, LDA, X, LDX, ONE, WORK, N )
 | |
| *
 | |
| *        Check whether the NRHS normwise backward errors satisfy the
 | |
| *        stopping criterion. If yes, set ITER=IITER>0 and return.
 | |
| *
 | |
|          DO I = 1, NRHS
 | |
|             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
 | |
|             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
 | |
|             IF( RNRM.GT.XNRM*CTE )
 | |
|      $         GO TO 20
 | |
|          END DO
 | |
| *
 | |
| *        If we are here, the NRHS normwise backward errors satisfy the
 | |
| *        stopping criterion, we are good to exit.
 | |
| *
 | |
|          ITER = IITER
 | |
| *
 | |
|          RETURN
 | |
| *
 | |
|    20    CONTINUE
 | |
| *
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     If we are at this place of the code, this is because we have
 | |
| *     performed ITER=ITERMAX iterations and never satisfied the
 | |
| *     stopping criterion, set up the ITER flag accordingly and follow up
 | |
| *     on double precision routine.
 | |
| *
 | |
|       ITER = -ITERMAX - 1
 | |
| *
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Single-precision iterative refinement failed to converge to a
 | |
| *     satisfactory solution, so we resort to double precision.
 | |
| *
 | |
|       CALL DGETRF( N, N, A, LDA, IPIV, INFO )
 | |
| *
 | |
|       IF( INFO.NE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
 | |
|       CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
 | |
|      $             INFO )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSGESV
 | |
| *
 | |
|       END
 |