364 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSBGVD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSBGVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
 | |
| *                          Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
 | |
| *      $                   WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
 | |
| *> of a real generalized symmetric-definite banded eigenproblem, of the
 | |
| *> form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
 | |
| *> banded, and B is also positive definite.  If eigenvectors are
 | |
| *> desired, it uses a divide and conquer algorithm.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KA
 | |
| *> \verbatim
 | |
| *>          KA is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KB
 | |
| *> \verbatim
 | |
| *>          KB is INTEGER
 | |
| *>          The number of superdiagonals of the matrix B if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
 | |
| *>          On entry, the upper or lower triangle of the symmetric band
 | |
| *>          matrix A, stored in the first ka+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 | |
| *>
 | |
| *>          On exit, the contents of AB are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KA+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] BB
 | |
| *> \verbatim
 | |
| *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
 | |
| *>          On entry, the upper or lower triangle of the symmetric band
 | |
| *>          matrix B, stored in the first kb+1 rows of the array.  The
 | |
| *>          j-th column of B is stored in the j-th column of the array BB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 | |
| *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 | |
| *>
 | |
| *>          On exit, the factor S from the split Cholesky factorization
 | |
| *>          B = S**T*S, as returned by DPBSTF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDBB
 | |
| *> \verbatim
 | |
| *>          LDBB is INTEGER
 | |
| *>          The leading dimension of the array BB.  LDBB >= KB+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | |
| *>          eigenvectors, with the i-th column of Z holding the
 | |
| *>          eigenvector associated with W(i).  The eigenvectors are
 | |
| *>          normalized so Z**T*B*Z = I.
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If N <= 1,               LWORK >= 1.
 | |
| *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
 | |
| *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
 | |
| *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, and i is:
 | |
| *>             <= N:  the algorithm failed to converge:
 | |
| *>                    i off-diagonal elements of an intermediate
 | |
| *>                    tridiagonal form did not converge to zero;
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
 | |
| *>                    returned INFO = i: B is not positive definite.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHEReigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
 | |
|      $                   Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
 | |
|      $                   WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER, WANTZ
 | |
|       CHARACTER          VECT
 | |
|       INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
 | |
|      $                   LWMIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM, DLACPY, DPBSTF, DSBGST, DSBTRD, DSTEDC,
 | |
|      $                   DSTERF, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LE.1 ) THEN
 | |
|          LIWMIN = 1
 | |
|          LWMIN = 1
 | |
|       ELSE IF( WANTZ ) THEN
 | |
|          LIWMIN = 3 + 5*N
 | |
|          LWMIN = 1 + 5*N + 2*N**2
 | |
|       ELSE
 | |
|          LIWMIN = 1
 | |
|          LWMIN = 2*N
 | |
|       END IF
 | |
| *
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KA.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDAB.LT.KA+1 ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDBB.LT.KB+1 ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -14
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -16
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSBGVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Form a split Cholesky factorization of B.
 | |
| *
 | |
|       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem.
 | |
| *
 | |
|       INDE = 1
 | |
|       INDWRK = INDE + N
 | |
|       INDWK2 = INDWRK + N*N
 | |
|       LLWRK2 = LWORK - INDWK2 + 1
 | |
|       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
 | |
|      $             WORK, IINFO )
 | |
| *
 | |
| *     Reduce to tridiagonal form.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          VECT = 'U'
 | |
|       ELSE
 | |
|          VECT = 'N'
 | |
|       END IF
 | |
|       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
 | |
|      $             WORK( INDWRK ), IINFO )
 | |
| *
 | |
| *     For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL DSTERF( N, W, WORK( INDE ), INFO )
 | |
|       ELSE
 | |
|          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
 | |
|      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
 | |
|          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
 | |
|      $               ZERO, WORK( INDWK2 ), N )
 | |
|          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSBGVD
 | |
| *
 | |
|       END
 |