987 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			987 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b12 = -1.;
 | |
| static doublereal c_b14 = 1.;
 | |
| 
 | |
| /* > \brief \b DPPRFS */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DPPRFS + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpprfs.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpprfs.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpprfs.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, */
 | |
| /*                          BERR, WORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       INTEGER            INFO, LDB, LDX, N, NRHS */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ), */
 | |
| /*      $                   FERR( * ), WORK( * ), X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DPPRFS improves the computed solution to a system of linear */
 | |
| /* > equations when the coefficient matrix is symmetric positive definite */
 | |
| /* > and packed, and provides error bounds and backward error estimates */
 | |
| /* > for the solution. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of right hand sides, i.e., the number of columns */
 | |
| /* >          of the matrices B and X.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AP */
 | |
| /* > \verbatim */
 | |
| /* >          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 | |
| /* >          The upper or lower triangle of the symmetric matrix A, packed */
 | |
| /* >          columnwise in a linear array.  The j-th column of A is stored */
 | |
| /* >          in the array AP as follows: */
 | |
| /* >          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 | |
| /* >          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AFP */
 | |
| /* > \verbatim */
 | |
| /* >          AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 | |
| /* >          The triangular factor U or L from the Cholesky factorization */
 | |
| /* >          A = U**T*U or A = L*L**T, as computed by DPPTRF/ZPPTRF, */
 | |
| /* >          packed columnwise in a linear array in the same format as A */
 | |
| /* >          (see AP). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
 | |
| /* >          The right hand side matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
 | |
| /* >          On entry, the solution matrix X, as computed by DPPTRS. */
 | |
| /* >          On exit, the improved solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] FERR */
 | |
| /* > \verbatim */
 | |
| /* >          FERR is DOUBLE PRECISION array, dimension (NRHS) */
 | |
| /* >          The estimated forward error bound for each solution vector */
 | |
| /* >          X(j) (the j-th column of the solution matrix X). */
 | |
| /* >          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 | |
| /* >          is an estimated upper bound for the magnitude of the largest */
 | |
| /* >          element in (X(j) - XTRUE) divided by the magnitude of the */
 | |
| /* >          largest element in X(j).  The estimate is as reliable as */
 | |
| /* >          the estimate for RCOND, and is almost always a slight */
 | |
| /* >          overestimate of the true error. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BERR */
 | |
| /* > \verbatim */
 | |
| /* >          BERR is DOUBLE PRECISION array, dimension (NRHS) */
 | |
| /* >          The componentwise relative backward error of each solution */
 | |
| /* >          vector X(j) (i.e., the smallest relative change in */
 | |
| /* >          any element of A or B that makes X(j) an exact solution). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (3*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Internal Parameters: */
 | |
| /*  ========================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  ITMAX is the maximum number of steps of iterative refinement. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dpprfs_(char *uplo, integer *n, integer *nrhs, 
 | |
| 	doublereal *ap, doublereal *afp, doublereal *b, integer *ldb, 
 | |
| 	doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, 
 | |
| 	doublereal *work, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3;
 | |
|     doublereal d__1, d__2, d__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer kase;
 | |
|     doublereal safe1, safe2;
 | |
|     integer i__, j, k;
 | |
|     doublereal s;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer isave[3];
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     integer count;
 | |
|     extern /* Subroutine */ void dspmv_(char *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
 | |
| 	     integer *);
 | |
|     logical upper;
 | |
|     extern /* Subroutine */ void dlacn2_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *, integer *, integer *);
 | |
|     integer ik, kk;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal xk;
 | |
|     integer nz;
 | |
|     doublereal safmin;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal lstres;
 | |
|     extern /* Subroutine */ void dpptrs_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *);
 | |
|     doublereal eps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --ap;
 | |
|     --afp;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --ferr;
 | |
|     --berr;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldx < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DPPRFS", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0 || *nrhs == 0) {
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    ferr[j] = 0.;
 | |
| 	    berr[j] = 0.;
 | |
| /* L10: */
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
 | |
| 
 | |
|     nz = *n + 1;
 | |
|     eps = dlamch_("Epsilon");
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     safe1 = nz * safmin;
 | |
|     safe2 = safe1 / eps;
 | |
| 
 | |
| /*     Do for each right hand side */
 | |
| 
 | |
|     i__1 = *nrhs;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 
 | |
| 	count = 1;
 | |
| 	lstres = 3.;
 | |
| L20:
 | |
| 
 | |
| /*        Loop until stopping criterion is satisfied. */
 | |
| 
 | |
| /*        Compute residual R = B - A * X */
 | |
| 
 | |
| 	dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
 | |
| 	dspmv_(uplo, n, &c_b12, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b14, &
 | |
| 		work[*n + 1], &c__1);
 | |
| 
 | |
| /*        Compute componentwise relative backward error from formula */
 | |
| 
 | |
| /*        f2cmax(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
 | |
| 
 | |
| /*        where abs(Z) is the componentwise absolute value of the matrix */
 | |
| /*        or vector Z.  If the i-th component of the denominator is less */
 | |
| /*        than SAFE2, then SAFE1 is added to the i-th components of the */
 | |
| /*        numerator and denominator before dividing. */
 | |
| 
 | |
| 	i__2 = *n;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| /*        Compute abs(A)*abs(X) + abs(B). */
 | |
| 
 | |
| 	kk = 1;
 | |
| 	if (upper) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (k = 1; k <= i__2; ++k) {
 | |
| 		s = 0.;
 | |
| 		xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 | |
| 		ik = kk;
 | |
| 		i__3 = k - 1;
 | |
| 		for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		    work[i__] += (d__1 = ap[ik], abs(d__1)) * xk;
 | |
| 		    s += (d__1 = ap[ik], abs(d__1)) * (d__2 = x[i__ + j * 
 | |
| 			    x_dim1], abs(d__2));
 | |
| 		    ++ik;
 | |
| /* L40: */
 | |
| 		}
 | |
| 		work[k] = work[k] + (d__1 = ap[kk + k - 1], abs(d__1)) * xk + 
 | |
| 			s;
 | |
| 		kk += k;
 | |
| /* L50: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__2 = *n;
 | |
| 	    for (k = 1; k <= i__2; ++k) {
 | |
| 		s = 0.;
 | |
| 		xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 | |
| 		work[k] += (d__1 = ap[kk], abs(d__1)) * xk;
 | |
| 		ik = kk + 1;
 | |
| 		i__3 = *n;
 | |
| 		for (i__ = k + 1; i__ <= i__3; ++i__) {
 | |
| 		    work[i__] += (d__1 = ap[ik], abs(d__1)) * xk;
 | |
| 		    s += (d__1 = ap[ik], abs(d__1)) * (d__2 = x[i__ + j * 
 | |
| 			    x_dim1], abs(d__2));
 | |
| 		    ++ik;
 | |
| /* L60: */
 | |
| 		}
 | |
| 		work[k] += s;
 | |
| 		kk += *n - k + 1;
 | |
| /* L70: */
 | |
| 	    }
 | |
| 	}
 | |
| 	s = 0.;
 | |
| 	i__2 = *n;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    if (work[i__] > safe2) {
 | |
| /* Computing MAX */
 | |
| 		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
 | |
| 			i__];
 | |
| 		s = f2cmax(d__2,d__3);
 | |
| 	    } else {
 | |
| /* Computing MAX */
 | |
| 		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
 | |
| 			/ (work[i__] + safe1);
 | |
| 		s = f2cmax(d__2,d__3);
 | |
| 	    }
 | |
| /* L80: */
 | |
| 	}
 | |
| 	berr[j] = s;
 | |
| 
 | |
| /*        Test stopping criterion. Continue iterating if */
 | |
| /*           1) The residual BERR(J) is larger than machine epsilon, and */
 | |
| /*           2) BERR(J) decreased by at least a factor of 2 during the */
 | |
| /*              last iteration, and */
 | |
| /*           3) At most ITMAX iterations tried. */
 | |
| 
 | |
| 	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
 | |
| 
 | |
| /*           Update solution and try again. */
 | |
| 
 | |
| 	    dpptrs_(uplo, n, &c__1, &afp[1], &work[*n + 1], n, info);
 | |
| 	    daxpy_(n, &c_b14, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
 | |
| 		    ;
 | |
| 	    lstres = berr[j];
 | |
| 	    ++count;
 | |
| 	    goto L20;
 | |
| 	}
 | |
| 
 | |
| /*        Bound error from formula */
 | |
| 
 | |
| /*        norm(X - XTRUE) / norm(X) .le. FERR = */
 | |
| /*        norm( abs(inv(A))* */
 | |
| /*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
 | |
| 
 | |
| /*        where */
 | |
| /*          norm(Z) is the magnitude of the largest component of Z */
 | |
| /*          inv(A) is the inverse of A */
 | |
| /*          abs(Z) is the componentwise absolute value of the matrix or */
 | |
| /*             vector Z */
 | |
| /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
 | |
| /*          EPS is machine epsilon */
 | |
| 
 | |
| /*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
 | |
| /*        is incremented by SAFE1 if the i-th component of */
 | |
| /*        abs(A)*abs(X) + abs(B) is less than SAFE2. */
 | |
| 
 | |
| /*        Use DLACN2 to estimate the infinity-norm of the matrix */
 | |
| /*           inv(A) * diag(W), */
 | |
| /*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
 | |
| 
 | |
| 	i__2 = *n;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    if (work[i__] > safe2) {
 | |
| 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 | |
| 			work[i__];
 | |
| 	    } else {
 | |
| 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 | |
| 			work[i__] + safe1;
 | |
| 	    }
 | |
| /* L90: */
 | |
| 	}
 | |
| 
 | |
| 	kase = 0;
 | |
| L100:
 | |
| 	dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
 | |
| 		kase, isave);
 | |
| 	if (kase != 0) {
 | |
| 	    if (kase == 1) {
 | |
| 
 | |
| /*              Multiply by diag(W)*inv(A**T). */
 | |
| 
 | |
| 		dpptrs_(uplo, n, &c__1, &afp[1], &work[*n + 1], n, info);
 | |
| 		i__2 = *n;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    work[*n + i__] = work[i__] * work[*n + i__];
 | |
| /* L110: */
 | |
| 		}
 | |
| 	    } else if (kase == 2) {
 | |
| 
 | |
| /*              Multiply by inv(A)*diag(W). */
 | |
| 
 | |
| 		i__2 = *n;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    work[*n + i__] = work[i__] * work[*n + i__];
 | |
| /* L120: */
 | |
| 		}
 | |
| 		dpptrs_(uplo, n, &c__1, &afp[1], &work[*n + 1], n, info);
 | |
| 	    }
 | |
| 	    goto L100;
 | |
| 	}
 | |
| 
 | |
| /*        Normalize error. */
 | |
| 
 | |
| 	lstres = 0.;
 | |
| 	i__2 = *n;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
 | |
| 	    lstres = f2cmax(d__2,d__3);
 | |
| /* L130: */
 | |
| 	}
 | |
| 	if (lstres != 0.) {
 | |
| 	    ferr[j] /= lstres;
 | |
| 	}
 | |
| 
 | |
| /* L140: */
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DPPRFS */
 | |
| 
 | |
| } /* dpprfs_ */
 | |
| 
 |