278 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DPFTRS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DPFTRS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANSR, UPLO
 | |
| *       INTEGER            INFO, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( 0: * ), B( LDB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPFTRS solves a system of linear equations A*X = B with a symmetric
 | |
| *> positive definite matrix A using the Cholesky factorization
 | |
| *> A = U**T*U or A = L*L**T computed by DPFTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSR
 | |
| *> \verbatim
 | |
| *>          TRANSR is CHARACTER*1
 | |
| *>          = 'N':  The Normal TRANSR of RFP A is stored;
 | |
| *>          = 'T':  The Transpose TRANSR of RFP A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of RFP A is stored;
 | |
| *>          = 'L':  Lower triangle of RFP A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).
 | |
| *>          The triangular factor U or L from the Cholesky factorization
 | |
| *>          of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.
 | |
| *>          See note below for more details about RFP A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side matrix B.
 | |
| *>          On exit, the solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  We first consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  even. We give an example where N = 6.
 | |
| *>
 | |
| *>      AP is Upper             AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04 05       00
 | |
| *>      11 12 13 14 15       10 11
 | |
| *>         22 23 24 25       20 21 22
 | |
| *>            33 34 35       30 31 32 33
 | |
| *>               44 45       40 41 42 43 44
 | |
| *>                  55       50 51 52 53 54 55
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | |
| *>  the transpose of the first three columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | |
| *>  the transpose of the last three columns of AP lower.
 | |
| *>  This covers the case N even and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        03 04 05                33 43 53
 | |
| *>        13 14 15                00 44 54
 | |
| *>        23 24 25                10 11 55
 | |
| *>        33 34 35                20 21 22
 | |
| *>        00 44 45                30 31 32
 | |
| *>        01 11 55                40 41 42
 | |
| *>        02 12 22                50 51 52
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | |
| *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | |
| *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | |
| *>
 | |
| *>
 | |
| *>  We then consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  odd. We give an example where N = 5.
 | |
| *>
 | |
| *>     AP is Upper                 AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04              00
 | |
| *>      11 12 13 14              10 11
 | |
| *>         22 23 24              20 21 22
 | |
| *>            33 34              30 31 32 33
 | |
| *>               44              40 41 42 43 44
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | |
| *>  the transpose of the first two columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | |
| *>  the transpose of the last two columns of AP lower.
 | |
| *>  This covers the case N odd and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        02 03 04                00 33 43
 | |
| *>        12 13 14                10 11 44
 | |
| *>        22 23 24                20 21 22
 | |
| *>        00 33 34                30 31 32
 | |
| *>        01 11 44                40 41 42
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     02 12 22 00 01             00 10 20 30 40 50
 | |
| *>     03 13 23 33 11             33 11 21 31 41 51
 | |
| *>     04 14 24 34 44             43 44 22 32 42 52
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANSR, UPLO
 | |
|       INTEGER            INFO, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( 0: * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, NORMALTRANSR
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, DTFSM
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NORMALTRANSR = LSAME( TRANSR, 'N' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DPFTRS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     start execution: there are two triangular solves
 | |
| *
 | |
|       IF( LOWER ) THEN
 | |
|          CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
 | |
|      $               LDB )
 | |
|          CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
 | |
|      $               LDB )
 | |
|       ELSE
 | |
|          CALL DTFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
 | |
|      $               LDB )
 | |
|          CALL DTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
 | |
|      $               LDB )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPFTRS
 | |
| *
 | |
|       END
 |