421 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			421 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DPFTRI
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DPFTRI + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftri.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftri.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftri.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPFTRI( TRANSR, UPLO, N, A, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANSR, UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION         A( 0: * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPFTRI computes the inverse of a (real) symmetric positive definite
 | |
| *> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
 | |
| *> computed by DPFTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSR
 | |
| *> \verbatim
 | |
| *>          TRANSR is CHARACTER*1
 | |
| *>          = 'N':  The Normal TRANSR of RFP A is stored;
 | |
| *>          = 'T':  The Transpose TRANSR of RFP A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 )
 | |
| *>          On entry, the symmetric matrix A in RFP format. RFP format is
 | |
| *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
 | |
| *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
 | |
| *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
 | |
| *>          the transpose of RFP A as defined when
 | |
| *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
 | |
| *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
 | |
| *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
 | |
| *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
 | |
| *>          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
 | |
| *>          is odd. See the Note below for more details.
 | |
| *>
 | |
| *>          On exit, the symmetric inverse of the original matrix, in the
 | |
| *>          same storage format.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the (i,i) element of the factor U or L is
 | |
| *>                zero, and the inverse could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  We first consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  even. We give an example where N = 6.
 | |
| *>
 | |
| *>      AP is Upper             AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04 05       00
 | |
| *>      11 12 13 14 15       10 11
 | |
| *>         22 23 24 25       20 21 22
 | |
| *>            33 34 35       30 31 32 33
 | |
| *>               44 45       40 41 42 43 44
 | |
| *>                  55       50 51 52 53 54 55
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | |
| *>  the transpose of the first three columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | |
| *>  the transpose of the last three columns of AP lower.
 | |
| *>  This covers the case N even and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        03 04 05                33 43 53
 | |
| *>        13 14 15                00 44 54
 | |
| *>        23 24 25                10 11 55
 | |
| *>        33 34 35                20 21 22
 | |
| *>        00 44 45                30 31 32
 | |
| *>        01 11 55                40 41 42
 | |
| *>        02 12 22                50 51 52
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | |
| *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | |
| *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | |
| *>
 | |
| *>
 | |
| *>  We then consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  odd. We give an example where N = 5.
 | |
| *>
 | |
| *>     AP is Upper                 AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04              00
 | |
| *>      11 12 13 14              10 11
 | |
| *>         22 23 24              20 21 22
 | |
| *>            33 34              30 31 32 33
 | |
| *>               44              40 41 42 43 44
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | |
| *>  the transpose of the first two columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | |
| *>  the transpose of the last two columns of AP lower.
 | |
| *>  This covers the case N odd and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        02 03 04                00 33 43
 | |
| *>        12 13 14                10 11 44
 | |
| *>        22 23 24                20 21 22
 | |
| *>        00 33 34                30 31 32
 | |
| *>        01 11 44                40 41 42
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     02 12 22 00 01             00 10 20 30 40 50
 | |
| *>     03 13 23 33 11             33 11 21 31 41 51
 | |
| *>     04 14 24 34 44             43 44 22 32 42 52
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPFTRI( TRANSR, UPLO, N, A, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANSR, UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION         A( 0: * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, NISODD, NORMALTRANSR
 | |
|       INTEGER            N1, N2, K
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, DTFTRI, DLAUUM, DTRMM, DSYRK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MOD
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NORMALTRANSR = LSAME( TRANSR, 'N' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DPFTRI', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Invert the triangular Cholesky factor U or L.
 | |
| *
 | |
|       CALL DTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
 | |
|       IF( INFO.GT.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     If N is odd, set NISODD = .TRUE.
 | |
| *     If N is even, set K = N/2 and NISODD = .FALSE.
 | |
| *
 | |
|       IF( MOD( N, 2 ).EQ.0 ) THEN
 | |
|          K = N / 2
 | |
|          NISODD = .FALSE.
 | |
|       ELSE
 | |
|          NISODD = .TRUE.
 | |
|       END IF
 | |
| *
 | |
| *     Set N1 and N2 depending on LOWER
 | |
| *
 | |
|       IF( LOWER ) THEN
 | |
|          N2 = N / 2
 | |
|          N1 = N - N2
 | |
|       ELSE
 | |
|          N1 = N / 2
 | |
|          N2 = N - N1
 | |
|       END IF
 | |
| *
 | |
| *     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
 | |
| *     inv(L)^C*inv(L). There are eight cases.
 | |
| *
 | |
|       IF( NISODD ) THEN
 | |
| *
 | |
| *        N is odd
 | |
| *
 | |
|          IF( NORMALTRANSR ) THEN
 | |
| *
 | |
| *           N is odd and TRANSR = 'N'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
 | |
| *              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
 | |
| *              T1 -> a(0), T2 -> a(n), S -> a(N1)
 | |
| *
 | |
|                CALL DLAUUM( 'L', N1, A( 0 ), N, INFO )
 | |
|                CALL DSYRK( 'L', 'T', N1, N2, ONE, A( N1 ), N, ONE,
 | |
|      $                     A( 0 ), N )
 | |
|                CALL DTRMM( 'L', 'U', 'N', 'N', N2, N1, ONE, A( N ), N,
 | |
|      $                     A( N1 ), N )
 | |
|                CALL DLAUUM( 'U', N2, A( N ), N, INFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
 | |
| *              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
 | |
| *              T1 -> a(N2), T2 -> a(N1), S -> a(0)
 | |
| *
 | |
|                CALL DLAUUM( 'L', N1, A( N2 ), N, INFO )
 | |
|                CALL DSYRK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
 | |
|      $                     A( N2 ), N )
 | |
|                CALL DTRMM( 'R', 'U', 'T', 'N', N1, N2, ONE, A( N1 ), N,
 | |
|      $                     A( 0 ), N )
 | |
|                CALL DLAUUM( 'U', N2, A( N1 ), N, INFO )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N is odd and TRANSR = 'T'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              SRPA for LOWER, TRANSPOSE, and N is odd
 | |
| *              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
 | |
| *
 | |
|                CALL DLAUUM( 'U', N1, A( 0 ), N1, INFO )
 | |
|                CALL DSYRK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
 | |
|      $                     A( 0 ), N1 )
 | |
|                CALL DTRMM( 'R', 'L', 'N', 'N', N1, N2, ONE, A( 1 ), N1,
 | |
|      $                     A( N1*N1 ), N1 )
 | |
|                CALL DLAUUM( 'L', N2, A( 1 ), N1, INFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              SRPA for UPPER, TRANSPOSE, and N is odd
 | |
| *              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
 | |
| *
 | |
|                CALL DLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
 | |
|                CALL DSYRK( 'U', 'T', N1, N2, ONE, A( 0 ), N2, ONE,
 | |
|      $                     A( N2*N2 ), N2 )
 | |
|                CALL DTRMM( 'L', 'L', 'T', 'N', N2, N1, ONE, A( N1*N2 ),
 | |
|      $                     N2, A( 0 ), N2 )
 | |
|                CALL DLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        N is even
 | |
| *
 | |
|          IF( NORMALTRANSR ) THEN
 | |
| *
 | |
| *           N is even and TRANSR = 'N'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
 | |
| *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
 | |
| *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
 | |
| *
 | |
|                CALL DLAUUM( 'L', K, A( 1 ), N+1, INFO )
 | |
|                CALL DSYRK( 'L', 'T', K, K, ONE, A( K+1 ), N+1, ONE,
 | |
|      $                     A( 1 ), N+1 )
 | |
|                CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, A( 0 ), N+1,
 | |
|      $                     A( K+1 ), N+1 )
 | |
|                CALL DLAUUM( 'U', K, A( 0 ), N+1, INFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
 | |
| *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
 | |
| *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
 | |
| *
 | |
|                CALL DLAUUM( 'L', K, A( K+1 ), N+1, INFO )
 | |
|                CALL DSYRK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
 | |
|      $                     A( K+1 ), N+1 )
 | |
|                CALL DTRMM( 'R', 'U', 'T', 'N', K, K, ONE, A( K ), N+1,
 | |
|      $                     A( 0 ), N+1 )
 | |
|                CALL DLAUUM( 'U', K, A( K ), N+1, INFO )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N is even and TRANSR = 'T'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
 | |
| *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
 | |
| *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
 | |
| *
 | |
|                CALL DLAUUM( 'U', K, A( K ), K, INFO )
 | |
|                CALL DSYRK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
 | |
|      $                     A( K ), K )
 | |
|                CALL DTRMM( 'R', 'L', 'N', 'N', K, K, ONE, A( 0 ), K,
 | |
|      $                     A( K*( K+1 ) ), K )
 | |
|                CALL DLAUUM( 'L', K, A( 0 ), K, INFO )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
 | |
| *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
 | |
| *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
 | |
| *
 | |
|                CALL DLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
 | |
|                CALL DSYRK( 'U', 'T', K, K, ONE, A( 0 ), K, ONE,
 | |
|      $                     A( K*( K+1 ) ), K )
 | |
|                CALL DTRMM( 'L', 'L', 'T', 'N', K, K, ONE, A( K*K ), K,
 | |
|      $                     A( 0 ), K )
 | |
|                CALL DLAUUM( 'L', K, A( K*K ), K, INFO )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPFTRI
 | |
| *
 | |
|       END
 |