983 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			983 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b7 = 1.;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b10 = -1.;
 | |
| 
 | |
| /* > \brief \b DORHR_COL */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DORHR_COL + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorhr_c
 | |
| ol.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorhr_c
 | |
| ol.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorhr_c
 | |
| ol.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > */
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) */
 | |
| 
 | |
| /*       INTEGER           INFO, LDA, LDT, M, N, NB */
 | |
| /*       DOUBLE PRECISION  A( LDA, * ), D( * ), T( LDT, * ) */
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns */
 | |
| /* >  as input, stored in A, and performs Householder Reconstruction (HR), */
 | |
| /* >  i.e. reconstructs Householder vectors V(i) implicitly representing */
 | |
| /* >  another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, */
 | |
| /* >  where S is an N-by-N diagonal matrix with diagonal entries */
 | |
| /* >  equal to +1 or -1. The Householder vectors (columns V(i) of V) are */
 | |
| /* >  stored in A on output, and the diagonal entries of S are stored in D. */
 | |
| /* >  Block reflectors are also returned in T */
 | |
| /* >  (same output format as DGEQRT). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A. M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A. M >= N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NB */
 | |
| /* > \verbatim */
 | |
| /* >          NB is INTEGER */
 | |
| /* >          The column block size to be used in the reconstruction */
 | |
| /* >          of Householder column vector blocks in the array A and */
 | |
| /* >          corresponding block reflectors in the array T. NB >= 1. */
 | |
| /* >          (Note that if NB > N, then N is used instead of NB */
 | |
| /* >          as the column block size.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /* > */
 | |
| /* >          On entry: */
 | |
| /* > */
 | |
| /* >             The array A contains an M-by-N orthonormal matrix Q_in, */
 | |
| /* >             i.e the columns of A are orthogonal unit vectors. */
 | |
| /* > */
 | |
| /* >          On exit: */
 | |
| /* > */
 | |
| /* >             The elements below the diagonal of A represent the unit */
 | |
| /* >             lower-trapezoidal matrix V of Householder column vectors */
 | |
| /* >             V(i). The unit diagonal entries of V are not stored */
 | |
| /* >             (same format as the output below the diagonal in A from */
 | |
| /* >             DGEQRT). The matrix T and the matrix V stored on output */
 | |
| /* >             in A implicitly define Q_out. */
 | |
| /* > */
 | |
| /* >             The elements above the diagonal contain the factor U */
 | |
| /* >             of the "modified" LU-decomposition: */
 | |
| /* >                Q_in - ( S ) = V * U */
 | |
| /* >                       ( 0 ) */
 | |
| /* >             where 0 is a (M-N)-by-(M-N) zero matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is DOUBLE PRECISION array, */
 | |
| /* >          dimension (LDT, N) */
 | |
| /* > */
 | |
| /* >          Let NOCB = Number_of_output_col_blocks */
 | |
| /* >                   = CEIL(N/NB) */
 | |
| /* > */
 | |
| /* >          On exit, T(1:NB, 1:N) contains NOCB upper-triangular */
 | |
| /* >          block reflectors used to define Q_out stored in compact */
 | |
| /* >          form as a sequence of upper-triangular NB-by-NB column */
 | |
| /* >          blocks (same format as the output T in DGEQRT). */
 | |
| /* >          The matrix T and the matrix V stored on output in A */
 | |
| /* >          implicitly define Q_out. NOTE: The lower triangles */
 | |
| /* >          below the upper-triangular blcoks will be filled with */
 | |
| /* >          zeros. See Further Details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T. */
 | |
| /* >          LDT >= f2cmax(1,f2cmin(NB,N)). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension f2cmin(M,N). */
 | |
| /* >          The elements can be only plus or minus one. */
 | |
| /* > */
 | |
| /* >          D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where */
 | |
| /* >          1 <= i <= f2cmin(M,N), and Q_in_i is Q_in after performing */
 | |
| /* >          i-1 steps of “modified” Gaussian elimination. */
 | |
| /* >          See Further Details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > The computed M-by-M orthogonal factor Q_out is defined implicitly as */
 | |
| /* > a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in */
 | |
| /* > the compact WY-representation format in the corresponding blocks of */
 | |
| /* > matrices V (stored in A) and T. */
 | |
| /* > */
 | |
| /* > The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N */
 | |
| /* > matrix A contains the column vectors V(i) in NB-size column */
 | |
| /* > blocks VB(j). For example, VB(1) contains the columns */
 | |
| /* > V(1), V(2), ... V(NB). NOTE: The unit entries on */
 | |
| /* > the diagonal of Y are not stored in A. */
 | |
| /* > */
 | |
| /* > The number of column blocks is */
 | |
| /* > */
 | |
| /* >     NOCB = Number_of_output_col_blocks = CEIL(N/NB) */
 | |
| /* > */
 | |
| /* > where each block is of order NB except for the last block, which */
 | |
| /* > is of order LAST_NB = N - (NOCB-1)*NB. */
 | |
| /* > */
 | |
| /* > For example, if M=6,  N=5 and NB=2, the matrix V is */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >     V = (    VB(1),   VB(2), VB(3) ) = */
 | |
| /* > */
 | |
| /* >       = (   1                      ) */
 | |
| /* >         ( v21    1                 ) */
 | |
| /* >         ( v31  v32    1            ) */
 | |
| /* >         ( v41  v42  v43   1        ) */
 | |
| /* >         ( v51  v52  v53  v54    1  ) */
 | |
| /* >         ( v61  v62  v63  v54   v65 ) */
 | |
| /* > */
 | |
| /* > */
 | |
| /* > For each of the column blocks VB(i), an upper-triangular block */
 | |
| /* > reflector TB(i) is computed. These blocks are stored as */
 | |
| /* > a sequence of upper-triangular column blocks in the NB-by-N */
 | |
| /* > matrix T. The size of each TB(i) block is NB-by-NB, except */
 | |
| /* > for the last block, whose size is LAST_NB-by-LAST_NB. */
 | |
| /* > */
 | |
| /* > For example, if M=6,  N=5 and NB=2, the matrix T is */
 | |
| /* > */
 | |
| /* >     T  = (    TB(1),    TB(2), TB(3) ) = */
 | |
| /* > */
 | |
| /* >        = ( t11  t12  t13  t14   t15  ) */
 | |
| /* >          (      t22       t24        ) */
 | |
| /* > */
 | |
| /* > */
 | |
| /* > The M-by-M factor Q_out is given as a product of NOCB */
 | |
| /* > orthogonal M-by-M matrices Q_out(i). */
 | |
| /* > */
 | |
| /* >     Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB), */
 | |
| /* > */
 | |
| /* > where each matrix Q_out(i) is given by the WY-representation */
 | |
| /* > using corresponding blocks from the matrices V and T: */
 | |
| /* > */
 | |
| /* >     Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T, */
 | |
| /* > */
 | |
| /* > where I is the identity matrix. Here is the formula with matrix */
 | |
| /* > dimensions: */
 | |
| /* > */
 | |
| /* >  Q(i){M-by-M} = I{M-by-M} - */
 | |
| /* >    VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M}, */
 | |
| /* > */
 | |
| /* > where INB = NB, except for the last block NOCB */
 | |
| /* > for which INB=LAST_NB. */
 | |
| /* > */
 | |
| /* > ===== */
 | |
| /* > NOTE: */
 | |
| /* > ===== */
 | |
| /* > */
 | |
| /* > If Q_in is the result of doing a QR factorization */
 | |
| /* > B = Q_in * R_in, then: */
 | |
| /* > */
 | |
| /* > B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out. */
 | |
| /* > */
 | |
| /* > So if one wants to interpret Q_out as the result */
 | |
| /* > of the QR factorization of B, then corresponding R_out */
 | |
| /* > should be obtained by R_out = S * R_in, i.e. some rows of R_in */
 | |
| /* > should be multiplied by -1. */
 | |
| /* > */
 | |
| /* > For the details of the algorithm, see [1]. */
 | |
| /* > */
 | |
| /* > [1] "Reconstructing Householder vectors from tall-skinny QR", */
 | |
| /* >     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, */
 | |
| /* >     E. Solomonik, J. Parallel Distrib. Comput., */
 | |
| /* >     vol. 85, pp. 3-31, 2015. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2019 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > November   2019, Igor Kozachenko, */
 | |
| /* >            Computer Science Division, */
 | |
| /* >            University of California, Berkeley */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dorhr_col_(integer *m, integer *n, integer *nb, 
 | |
| 	doublereal *a, integer *lda, doublereal *t, integer *ldt, doublereal *
 | |
| 	d__, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     extern /* Subroutine */ void dlaorhr_col_getrfnp_(integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     integer nplusone, i__, j;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     integer iinfo;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *), dtrsm_(char *, char *, char *, char *, 
 | |
| 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer jb;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer jbtemp1, jbtemp2, jnb;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.9.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2019 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0 || *n > *m) {
 | |
| 	*info = -2;
 | |
|     } else if (*nb < 1) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -5;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = f2cmin(*nb,*n);
 | |
| 	if (*ldt < f2cmax(i__1,i__2)) {
 | |
| 	    *info = -7;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Handle error in the input parameters. */
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DORHR_COL", &i__1, (ftnlen)9);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (f2cmin(*m,*n) == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     On input, the M-by-N matrix A contains the orthogonal */
 | |
| /*     M-by-N matrix Q_in. */
 | |
| 
 | |
| /*     (1) Compute the unit lower-trapezoidal V (ones on the diagonal */
 | |
| /*     are not stored) by performing the "modified" LU-decomposition. */
 | |
| 
 | |
| /*     Q_in - ( S ) = V * U = ( V1 ) * U, */
 | |
| /*            ( 0 )           ( V2 ) */
 | |
| 
 | |
| /*     where 0 is an (M-N)-by-N zero matrix. */
 | |
| 
 | |
| /*     (1-1) Factor V1 and U. */
 | |
|     dlaorhr_col_getrfnp_(n, n, &a[a_offset], lda, &d__[1], &iinfo);
 | |
| 
 | |
| /*     (1-2) Solve for V2. */
 | |
| 
 | |
|     if (*m > *n) {
 | |
| 	i__1 = *m - *n;
 | |
| 	dtrsm_("R", "U", "N", "N", &i__1, n, &c_b7, &a[a_offset], lda, &a[*n 
 | |
| 		+ 1 + a_dim1], lda);
 | |
|     }
 | |
| 
 | |
| /*     (2) Reconstruct the block reflector T stored in T(1:NB, 1:N) */
 | |
| /*     as a sequence of upper-triangular blocks with NB-size column */
 | |
| /*     blocking. */
 | |
| 
 | |
| /*     Loop over the column blocks of size NB of the array A(1:M,1:N) */
 | |
| /*     and the array T(1:NB,1:N), JB is the column index of a column */
 | |
| /*     block, JNB is the column block size at each step JB. */
 | |
| 
 | |
|     nplusone = *n + 1;
 | |
|     i__1 = *n;
 | |
|     i__2 = *nb;
 | |
|     for (jb = 1; i__2 < 0 ? jb >= i__1 : jb <= i__1; jb += i__2) {
 | |
| 
 | |
| /*        (2-0) Determine the column block size JNB. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__3 = nplusone - jb;
 | |
| 	jnb = f2cmin(i__3,*nb);
 | |
| 
 | |
| /*        (2-1) Copy the upper-triangular part of the current JNB-by-JNB */
 | |
| /*        diagonal block U(JB) (of the N-by-N matrix U) stored */
 | |
| /*        in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part */
 | |
| /*        of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1) */
 | |
| /*        column-by-column, total JNB*(JNB+1)/2 elements. */
 | |
| 
 | |
| 	jbtemp1 = jb - 1;
 | |
| 	i__3 = jb + jnb - 1;
 | |
| 	for (j = jb; j <= i__3; ++j) {
 | |
| 	    i__4 = j - jbtemp1;
 | |
| 	    dcopy_(&i__4, &a[jb + j * a_dim1], &c__1, &t[j * t_dim1 + 1], &
 | |
| 		    c__1);
 | |
| 	}
 | |
| 
 | |
| /*        (2-2) Perform on the upper-triangular part of the current */
 | |
| /*        JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored */
 | |
| /*        in T(1:JNB,JB:JB+JNB-1) the following operation in place: */
 | |
| /*        (-1)*U(JB)*S(JB), i.e the result will be stored in the upper- */
 | |
| /*        triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication */
 | |
| /*        of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB */
 | |
| /*        diagonal block S(JB) of the N-by-N sign matrix S from the */
 | |
| /*        right means changing the sign of each J-th column of the block */
 | |
| /*        U(JB) according to the sign of the diagonal element of the block */
 | |
| /*        S(JB), i.e. S(J,J) that is stored in the array element D(J). */
 | |
| 
 | |
| 	i__3 = jb + jnb - 1;
 | |
| 	for (j = jb; j <= i__3; ++j) {
 | |
| 	    if (d__[j] == 1.) {
 | |
| 		i__4 = j - jbtemp1;
 | |
| 		dscal_(&i__4, &c_b10, &t[j * t_dim1 + 1], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        (2-3) Perform the triangular solve for the current block */
 | |
| /*        matrix X(JB): */
 | |
| 
 | |
| /*               X(JB) * (A(JB)**T) = B(JB), where: */
 | |
| 
 | |
| /*               A(JB)**T  is a JNB-by-JNB unit upper-triangular */
 | |
| /*                         coefficient block, and A(JB)=V1(JB), which */
 | |
| /*                         is a JNB-by-JNB unit lower-triangular block */
 | |
| /*                         stored in A(JB:JB+JNB-1,JB:JB+JNB-1). */
 | |
| /*                         The N-by-N matrix V1 is the upper part */
 | |
| /*                         of the M-by-N lower-trapezoidal matrix V */
 | |
| /*                         stored in A(1:M,1:N); */
 | |
| 
 | |
| /*               B(JB)     is a JNB-by-JNB  upper-triangular right-hand */
 | |
| /*                         side block, B(JB) = (-1)*U(JB)*S(JB), and */
 | |
| /*                         B(JB) is stored in T(1:JNB,JB:JB+JNB-1); */
 | |
| 
 | |
| /*               X(JB)     is a JNB-by-JNB upper-triangular solution */
 | |
| /*                         block, X(JB) is the upper-triangular block */
 | |
| /*                         reflector T(JB), and X(JB) is stored */
 | |
| /*                         in T(1:JNB,JB:JB+JNB-1). */
 | |
| 
 | |
| /*             In other words, we perform the triangular solve for the */
 | |
| /*             upper-triangular block T(JB): */
 | |
| 
 | |
| /*               T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB). */
 | |
| 
 | |
| /*             Even though the blocks X(JB) and B(JB) are upper- */
 | |
| /*             triangular, the routine DTRSM will access all JNB**2 */
 | |
| /*             elements of the square T(1:JNB,JB:JB+JNB-1). Therefore, */
 | |
| /*             we need to set to zero the elements of the block */
 | |
| /*             T(1:JNB,JB:JB+JNB-1) below the diagonal before the call */
 | |
| /*             to DTRSM. */
 | |
| 
 | |
| /*        (2-3a) Set the elements to zero. */
 | |
| 
 | |
| 	jbtemp2 = jb - 2;
 | |
| 	i__3 = jb + jnb - 2;
 | |
| 	for (j = jb; j <= i__3; ++j) {
 | |
| 	    i__4 = *nb;
 | |
| 	    for (i__ = j - jbtemp2; i__ <= i__4; ++i__) {
 | |
| 		t[i__ + j * t_dim1] = 0.;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        (2-3b) Perform the triangular solve. */
 | |
| 
 | |
| 	dtrsm_("R", "L", "T", "U", &jnb, &jnb, &c_b7, &a[jb + jb * a_dim1], 
 | |
| 		lda, &t[jb * t_dim1 + 1], ldt);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DORHR_COL */
 | |
| 
 | |
| } /* dorhr_col__ */
 | |
| 
 |