1266 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1266 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | |
| #define myexp_(w) my_expfunc(w)
 | |
| 
 | |
| static int my_expfunc(double *x) {int e; (void)frexp(*x,&e); return e;}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static doublereal c_b35 = -1.;
 | |
| static doublereal c_b36 = 1.;
 | |
| 
 | |
| /* > \brief \b DLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.
 | |
|  */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*      SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, */
 | |
| /*                          X, LDX, SCALE, CNORM, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          DIAG, NORMIN, TRANS, UPLO */
 | |
| /*       INTEGER            INFO, LDA, LWORK, LDX, N, NRHS */
 | |
| /*       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), SCALE( * ), */
 | |
| /*                          WORK( * ), X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DLATRS3 solves one of the triangular systems */
 | |
| /* > */
 | |
| /* >    A * X = B * diag(scale)  or  A**T * X = B * diag(scale) */
 | |
| /* > */
 | |
| /* > with scaling to prevent overflow.  Here A is an upper or lower */
 | |
| /* > triangular matrix, A**T denotes the transpose of A. X and B are */
 | |
| /* > n by nrhs matrices and scale is an nrhs element vector of scaling */
 | |
| /* > factors. A scaling factor scale(j) is usually less than or equal */
 | |
| /* > to 1, chosen such that X(:,j) is less than the overflow threshold. */
 | |
| /* > If the matrix A is singular (A(j,j) = 0 for some j), then */
 | |
| /* > a non-trivial solution to A*X = 0 is returned. If the system is */
 | |
| /* > so badly scaled that the solution cannot be represented as */
 | |
| /* > (1/scale(k))*X(:,k), then x(:,k) = 0 and scale(k) is returned. */
 | |
| /* > */
 | |
| /* > This is a BLAS-3 version of LATRS for solving several right */
 | |
| /* > hand sides simultaneously. */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the matrix A is upper or lower triangular. */
 | |
| /* >          = 'U':  Upper triangular */
 | |
| /* >          = 'L':  Lower triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          Specifies the operation applied to A. */
 | |
| /* >          = 'N':  Solve A * x = s*b  (No transpose) */
 | |
| /* >          = 'T':  Solve A**T* x = s*b  (Transpose) */
 | |
| /* >          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIAG */
 | |
| /* > \verbatim */
 | |
| /* >          DIAG is CHARACTER*1 */
 | |
| /* >          Specifies whether or not the matrix A is unit triangular. */
 | |
| /* >          = 'N':  Non-unit triangular */
 | |
| /* >          = 'U':  Unit triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NORMIN */
 | |
| /* > \verbatim */
 | |
| /* >          NORMIN is CHARACTER*1 */
 | |
| /* >          Specifies whether CNORM has been set or not. */
 | |
| /* >          = 'Y':  CNORM contains the column norms on entry */
 | |
| /* >          = 'N':  CNORM is not set on entry.  On exit, the norms will */
 | |
| /* >                  be computed and stored in CNORM. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of columns of X.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /* >          The triangular matrix A.  If UPLO = 'U', the leading n by n */
 | |
| /* >          upper triangular part of the array A contains the upper */
 | |
| /* >          triangular matrix, and the strictly lower triangular part of */
 | |
| /* >          A is not referenced.  If UPLO = 'L', the leading n by n lower */
 | |
| /* >          triangular part of the array A contains the lower triangular */
 | |
| /* >          matrix, and the strictly upper triangular part of A is not */
 | |
| /* >          referenced.  If DIAG = 'U', the diagonal elements of A are */
 | |
| /* >          also not referenced and are assumed to be 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax (1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
 | |
| /* >          On entry, the right hand side B of the triangular system. */
 | |
| /* >          On exit, X is overwritten by the solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of the array X.  LDX >= f2cmax (1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is DOUBLE PRECISION array, dimension (NRHS) */
 | |
| /* >          The scaling factor s(k) is for the triangular system */
 | |
| /* >          A * x(:,k) = s(k)*b(:,k)  or  A**T* x(:,k) = s(k)*b(:,k). */
 | |
| /* >          If SCALE = 0, the matrix A is singular or badly scaled. */
 | |
| /* >          If A(j,j) = 0 is encountered, a non-trivial vector x(:,k) */
 | |
| /* >          that is an exact or approximate solution to A*x(:,k) = 0 */
 | |
| /* >          is returned. If the system so badly scaled that solution */
 | |
| /* >          cannot be presented as x(:,k) * 1/s(k), then x(:,k) = 0 */
 | |
| /* >          is returned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] CNORM */
 | |
| /* > \verbatim */
 | |
| /* >          CNORM is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > */
 | |
| /* >          If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
 | |
| /* >          contains the norm of the off-diagonal part of the j-th column */
 | |
| /* >          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal */
 | |
| /* >          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
 | |
| /* >          must be greater than or equal to the 1-norm. */
 | |
| /* > */
 | |
| /* >          If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
 | |
| /* >          returns the 1-norm of the offdiagonal part of the j-th column */
 | |
| /* >          of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (LWORK). */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal size of */
 | |
| /* >          WORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where */
 | |
| /* >          NBA = (N + NB - 1)/NB and NB is the optimal block size. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal dimensions of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -k, the k-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \ingroup doubleOTHERauxiliary */
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /*  \verbatim */
 | |
| /*  The algorithm follows the structure of a block triangular solve. */
 | |
| /*  The diagonal block is solved with a call to the robust the triangular */
 | |
| /*  solver LATRS for every right-hand side RHS = 1, ..., NRHS */
 | |
| /*     op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS ), */
 | |
| /*  where op( A ) = A or op( A ) = A**T. */
 | |
| /*  The linear block updates operate on block columns of X, */
 | |
| /*     B( I, K ) - op(A( I, J )) * X( J, K ) */
 | |
| /*  and use GEMM. To avoid overflow in the linear block update, the worst case */
 | |
| /*  growth is estimated. For every RHS, a scale factor s <= 1.0 is computed */
 | |
| /*  such that */
 | |
| /*     || s * B( I, RHS )||_oo */
 | |
| /*   + || op(A( I, J )) ||_oo * || s *  X( J, RHS ) ||_oo <= Overflow threshold */
 | |
| 
 | |
| /*  Once all columns of a block column have been rescaled (BLAS-1), the linear */
 | |
| /*  update is executed with GEMM without overflow. */
 | |
| 
 | |
| /*  To limit rescaling, local scale factors track the scaling of column segments. */
 | |
| /*  There is one local scale factor s( I, RHS ) per block row I = 1, ..., NBA */
 | |
| /*  per right-hand side column RHS = 1, ..., NRHS. The global scale factor */
 | |
| /*  SCALE( RHS ) is chosen as the smallest local scale factor s( I, RHS ) */
 | |
| /*  I = 1, ..., NBA. */
 | |
| /*  A triangular solve op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS ) */
 | |
| /*  updates the local scale factor s( J, RHS ) := s( J, RHS ) * SCALOC. The */
 | |
| /*  linear update of potentially inconsistently scaled vector segments */
 | |
| /*     s( I, RHS ) * b( I, RHS ) - op(A( I, J )) * ( s( J, RHS )* x( J, RHS ) ) */
 | |
| /*  computes a consistent scaling SCAMIN = MIN( s(I, RHS ), s(J, RHS) ) and, */
 | |
| /*  if necessary, rescales the blocks prior to calling GEMM. */
 | |
| 
 | |
| /*  \endverbatim */
 | |
| /*  ===================================================================== */
 | |
| /*  References: */
 | |
| /*  C. C. Kjelgaard Mikkelsen, A. B. Schwarz and L. Karlsson (2019). */
 | |
| /*  Parallel robust solution of triangular linear systems. Concurrency */
 | |
| /*  and Computation: Practice and Experience, 31(19), e5064. */
 | |
| 
 | |
| /*  Contributor: */
 | |
| /*   Angelika Schwarz, Umea University, Sweden. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlatrs3_(char *uplo, char *trans, char *diag, char *
 | |
| 	normin, integer *n, integer *nrhs, doublereal *a, integer *lda, 
 | |
| 	doublereal *x, integer *ldx, doublereal *scale, doublereal *cnorm, 
 | |
| 	doublereal *work, integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, 
 | |
| 	    i__6, i__7, i__8;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer iinc, jinc;
 | |
|     doublereal scal, anrm, bnrm;
 | |
|     integer awrk;
 | |
|     doublereal tmax, xnrm[32];
 | |
|     integer i__, j, k;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal w[64];
 | |
|     extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal rscal;
 | |
|     integer lanrm, ilast, jlast, i1;
 | |
|     logical upper;
 | |
|     integer i2, j1, j2, k1, k2, nb, ii, kk;
 | |
|     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *);
 | |
|     integer lscale;
 | |
|     doublereal scaloc, scamin;
 | |
|     extern doublereal dlarmm_(doublereal *, doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen );
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     doublereal bignum;
 | |
|     extern /* Subroutine */ void dlatrs_(char *, char *, char *, char *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer ifirst;
 | |
|     logical notran;
 | |
|     integer jfirst;
 | |
|     doublereal smlnum;
 | |
|     logical nounit, lquery;
 | |
|     integer nba, lds, nbx, rhs;
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --scale;
 | |
|     --cnorm;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     notran = lsame_(trans, "N");
 | |
|     nounit = lsame_(diag, "N");
 | |
|     lquery = *lwork == -1;
 | |
| 
 | |
| /*     Partition A and X into blocks */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = 8, i__2 = ilaenv_(&c__1, "DLATRS", "", n, n, &c_n1, &c_n1, (ftnlen)
 | |
| 	    6, (ftnlen)0);
 | |
|     nb = f2cmax(i__1,i__2);
 | |
|     nb = f2cmin(64,nb);
 | |
| /* Computing MAX */
 | |
|     i__1 = 1, i__2 = (*n + nb - 1) / nb;
 | |
|     nba = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
|     i__1 = 1, i__2 = (*nrhs + 31) / 32;
 | |
|     nbx = f2cmax(i__1,i__2);
 | |
| 
 | |
| /*     Compute the workspace */
 | |
| 
 | |
| /*     The workspace comprises two parts. */
 | |
| /*     The first part stores the local scale factors. Each simultaneously */
 | |
| /*     computed right-hand side requires one local scale factor per block */
 | |
| /*     row. WORK( I+KK*LDS ) is the scale factor of the vector */
 | |
| /*     segment associated with the I-th block row and the KK-th vector */
 | |
| /*     in the block column. */
 | |
| /* Computing MAX */
 | |
|     i__1 = nba, i__2 = f2cmin(*nrhs,32);
 | |
|     lscale = nba * f2cmax(i__1,i__2);
 | |
|     lds = nba;
 | |
| /*     The second part stores upper bounds of the triangular A. There are */
 | |
| /*     a total of NBA x NBA blocks, of which only the upper triangular */
 | |
| /*     part or the lower triangular part is referenced. The upper bound of */
 | |
| /*     the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ). */
 | |
|     lanrm = nba * nba;
 | |
|     awrk = lscale;
 | |
|     work[1] = (doublereal) (lscale + lanrm);
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (! notran && ! lsame_(trans, "T") && ! 
 | |
| 	    lsame_(trans, "C")) {
 | |
| 	*info = -2;
 | |
|     } else if (! nounit && ! lsame_(diag, "U")) {
 | |
| 	*info = -3;
 | |
|     } else if (! lsame_(normin, "Y") && ! lsame_(normin,
 | |
| 	     "N")) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -6;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldx < f2cmax(1,*n)) {
 | |
| 	*info = -10;
 | |
|     } else if (! lquery && (doublereal) (*lwork) < work[1]) {
 | |
| 	*info = -14;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DLATRS3", &i__1, 7);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize scaling factors */
 | |
| 
 | |
|     i__1 = *nrhs;
 | |
|     for (kk = 1; kk <= i__1; ++kk) {
 | |
| 	scale[kk] = 1.;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (f2cmin(*n,*nrhs) == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine machine dependent constant to control overflow. */
 | |
| 
 | |
|     bignum = dlamch_("Overflow");
 | |
|     smlnum = dlamch_("Safe Minimum");
 | |
| 
 | |
| /*     Use unblocked code for small problems */
 | |
| 
 | |
|     if (*nrhs < 2) {
 | |
| 	dlatrs_(uplo, trans, diag, normin, n, &a[a_offset], lda, &x[x_dim1 + 
 | |
| 		1], &scale[1], &cnorm[1], info);
 | |
| 	i__1 = *nrhs;
 | |
| 	for (k = 2; k <= i__1; ++k) {
 | |
| 	    dlatrs_(uplo, trans, diag, "Y", n, &a[a_offset], lda, &x[k * 
 | |
| 		    x_dim1 + 1], &scale[k], &cnorm[1], info);
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Compute norms of blocks of A excluding diagonal blocks and find */
 | |
| /*     the block with the largest norm TMAX. */
 | |
| 
 | |
|     tmax = 0.;
 | |
|     i__1 = nba;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	j1 = (j - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = j * nb;
 | |
| 	j2 = f2cmin(i__2,*n) + 1;
 | |
| 	if (upper) {
 | |
| 	    ifirst = 1;
 | |
| 	    ilast = j - 1;
 | |
| 	} else {
 | |
| 	    ifirst = j + 1;
 | |
| 	    ilast = nba;
 | |
| 	}
 | |
| 	i__2 = ilast;
 | |
| 	for (i__ = ifirst; i__ <= i__2; ++i__) {
 | |
| 	    i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__3 = i__ * nb;
 | |
| 	    i2 = f2cmin(i__3,*n) + 1;
 | |
| 
 | |
| /*           Compute upper bound of A( I1:I2-1, J1:J2-1 ). */
 | |
| 
 | |
| 	    if (notran) {
 | |
| 		i__3 = i2 - i1;
 | |
| 		i__4 = j2 - j1;
 | |
| 		anrm = dlange_("I", &i__3, &i__4, &a[i1 + j1 * a_dim1], lda, 
 | |
| 			w);
 | |
| 		work[awrk + i__ + (j - 1) * nba] = anrm;
 | |
| 	    } else {
 | |
| 		i__3 = i2 - i1;
 | |
| 		i__4 = j2 - j1;
 | |
| 		anrm = dlange_("1", &i__3, &i__4, &a[i1 + j1 * a_dim1], lda, 
 | |
| 			w);
 | |
| 		work[awrk + j + (i__ - 1) * nba] = anrm;
 | |
| 	    }
 | |
| 	    tmax = f2cmax(tmax,anrm);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (! (tmax <= dlamch_("Overflow"))) {
 | |
| 
 | |
| /*        Some matrix entries have huge absolute value. At least one upper */
 | |
| /*        bound norm( A(I1:I2-1, J1:J2-1), 'I') is not a valid floating-point */
 | |
| /*        number, either due to overflow in LANGE or due to Inf in A. */
 | |
| /*        Fall back to LATRS. Set normin = 'N' for every right-hand side to */
 | |
| /*        force computation of TSCAL in LATRS to avoid the likely overflow */
 | |
| /*        in the computation of the column norms CNORM. */
 | |
| 
 | |
| 	i__1 = *nrhs;
 | |
| 	for (k = 1; k <= i__1; ++k) {
 | |
| 	    dlatrs_(uplo, trans, diag, "N", n, &a[a_offset], lda, &x[k * 
 | |
| 		    x_dim1 + 1], &scale[k], &cnorm[1], info);
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Every right-hand side requires workspace to store NBA local scale */
 | |
| /*     factors. To save workspace, X is computed successively in block columns */
 | |
| /*     of width NBRHS, requiring a total of NBA x NBRHS space. If sufficient */
 | |
| /*     workspace is available, larger values of NBRHS or NBRHS = NRHS are viable. */
 | |
|     i__1 = nbx;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| /*        Loop over block columns (index = K) of X and, for column-wise scalings, */
 | |
| /*        over individual columns (index = KK). */
 | |
| /*        K1: column index of the first column in X( J, K ) */
 | |
| /*        K2: column index of the first column in X( J, K+1 ) */
 | |
| /*        so the K2 - K1 is the column count of the block X( J, K ) */
 | |
| 	k1 = (k - 1 << 5) + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = k << 5;
 | |
| 	k2 = f2cmin(i__2,*nrhs) + 1;
 | |
| 
 | |
| /*        Initialize local scaling factors of current block column X( J, K ) */
 | |
| 
 | |
| 	i__2 = k2 - k1;
 | |
| 	for (kk = 1; kk <= i__2; ++kk) {
 | |
| 	    i__3 = nba;
 | |
| 	    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		work[i__ + kk * lds] = 1.;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (notran) {
 | |
| 
 | |
| /*           Solve A * X(:, K1:K2-1) = B * diag(scale(K1:K2-1)) */
 | |
| 
 | |
| 	    if (upper) {
 | |
| 		jfirst = nba;
 | |
| 		jlast = 1;
 | |
| 		jinc = -1;
 | |
| 	    } else {
 | |
| 		jfirst = 1;
 | |
| 		jlast = nba;
 | |
| 		jinc = 1;
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Solve A**T * X(:, K1:K2-1) = B * diag(scale(K1:K2-1)) */
 | |
| 
 | |
| 	    if (upper) {
 | |
| 		jfirst = 1;
 | |
| 		jlast = nba;
 | |
| 		jinc = 1;
 | |
| 	    } else {
 | |
| 		jfirst = nba;
 | |
| 		jlast = 1;
 | |
| 		jinc = -1;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	i__2 = jlast;
 | |
| 	i__3 = jinc;
 | |
| 	for (j = jfirst; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
 | |
| /*           J1: row index of the first row in A( J, J ) */
 | |
| /*           J2: row index of the first row in A( J+1, J+1 ) */
 | |
| /*           so that J2 - J1 is the row count of the block A( J, J ) */
 | |
| 	    j1 = (j - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__4 = j * nb;
 | |
| 	    j2 = f2cmin(i__4,*n) + 1;
 | |
| 
 | |
| /*           Solve op(A( J, J )) * X( J, RHS ) = SCALOC * B( J, RHS ) */
 | |
| /*           for all right-hand sides in the current block column, */
 | |
| /*           one RHS at a time. */
 | |
| 
 | |
| 	    i__4 = k2 - k1;
 | |
| 	    for (kk = 1; kk <= i__4; ++kk) {
 | |
| 		rhs = k1 + kk - 1;
 | |
| 		if (kk == 1) {
 | |
| 		    i__5 = j2 - j1;
 | |
| 		    dlatrs_(uplo, trans, diag, "N", &i__5, &a[j1 + j1 * 
 | |
| 			    a_dim1], lda, &x[j1 + rhs * x_dim1], &scaloc, &
 | |
| 			    cnorm[1], info);
 | |
| 		} else {
 | |
| 		    i__5 = j2 - j1;
 | |
| 		    dlatrs_(uplo, trans, diag, "Y", &i__5, &a[j1 + j1 * 
 | |
| 			    a_dim1], lda, &x[j1 + rhs * x_dim1], &scaloc, &
 | |
| 			    cnorm[1], info);
 | |
| 		}
 | |
| /*              Find largest absolute value entry in the vector segment */
 | |
| /*              X( J1:J2-1, RHS ) as an upper bound for the worst case */
 | |
| /*              growth in the linear updates. */
 | |
| 		i__5 = j2 - j1;
 | |
| 		xnrm[kk - 1] = dlange_("I", &i__5, &c__1, &x[j1 + rhs * 
 | |
| 			x_dim1], ldx, w);
 | |
| 
 | |
| 		if (scaloc == 0.) {
 | |
| /*                 LATRS found that A is singular through A(j,j) = 0. */
 | |
| /*                 Reset the computation x(1:n) = 0, x(j) = 1, SCALE = 0 */
 | |
| /*                 and compute A*x = 0 (or A**T*x = 0). Note that */
 | |
| /*                 X(J1:J2-1, KK) is set by LATRS. */
 | |
| 		    scale[rhs] = 0.;
 | |
| 		    i__5 = j1 - 1;
 | |
| 		    for (ii = 1; ii <= i__5; ++ii) {
 | |
| 			x[ii + kk * x_dim1] = 0.;
 | |
| 		    }
 | |
| 		    i__5 = *n;
 | |
| 		    for (ii = j2; ii <= i__5; ++ii) {
 | |
| 			x[ii + kk * x_dim1] = 0.;
 | |
| 		    }
 | |
| /*                 Discard the local scale factors. */
 | |
| 		    i__5 = nba;
 | |
| 		    for (ii = 1; ii <= i__5; ++ii) {
 | |
| 			work[ii + kk * lds] = 1.;
 | |
| 		    }
 | |
| 		    scaloc = 1.;
 | |
| 		} else if (scaloc * work[j + kk * lds] == 0.) {
 | |
| /*                 LATRS computed a valid scale factor, but combined with */
 | |
| /*                 the current scaling the solution does not have a */
 | |
| /*                 scale factor > 0. */
 | |
| 
 | |
| /*                 Set WORK( J+KK*LDS ) to smallest valid scale */
 | |
| /*                 factor and increase SCALOC accordingly. */
 | |
| 		    scal = work[j + kk * lds] / smlnum;
 | |
| 		    scaloc *= scal;
 | |
| 		    work[j + kk * lds] = smlnum;
 | |
| /*                 If LATRS overestimated the growth, x may be */
 | |
| /*                 rescaled to preserve a valid combined scale */
 | |
| /*                 factor WORK( J, KK ) > 0. */
 | |
| 		    rscal = 1. / scaloc;
 | |
| 		    if (xnrm[kk - 1] * rscal <= bignum) {
 | |
| 			xnrm[kk - 1] *= rscal;
 | |
| 			i__5 = j2 - j1;
 | |
| 			dscal_(&i__5, &rscal, &x[j1 + rhs * x_dim1], &c__1);
 | |
| 			scaloc = 1.;
 | |
| 		    } else {
 | |
| /*                    The system op(A) * x = b is badly scaled and its */
 | |
| /*                    solution cannot be represented as (1/scale) * x. */
 | |
| /*                    Set x to zero. This approach deviates from LATRS */
 | |
| /*                    where a completely meaningless non-zero vector */
 | |
| /*                    is returned that is not a solution to op(A) * x = b. */
 | |
| 			scale[rhs] = 0.;
 | |
| 			i__5 = *n;
 | |
| 			for (ii = 1; ii <= i__5; ++ii) {
 | |
| 			    x[ii + kk * x_dim1] = 0.;
 | |
| 			}
 | |
| /*                    Discard the local scale factors. */
 | |
| 			i__5 = nba;
 | |
| 			for (ii = 1; ii <= i__5; ++ii) {
 | |
| 			    work[ii + kk * lds] = 1.;
 | |
| 			}
 | |
| 			scaloc = 1.;
 | |
| 		    }
 | |
| 		}
 | |
| 		scaloc *= work[j + kk * lds];
 | |
| 		work[j + kk * lds] = scaloc;
 | |
| 	    }
 | |
| 
 | |
| /*           Linear block updates */
 | |
| 
 | |
| 	    if (notran) {
 | |
| 		if (upper) {
 | |
| 		    ifirst = j - 1;
 | |
| 		    ilast = 1;
 | |
| 		    iinc = -1;
 | |
| 		} else {
 | |
| 		    ifirst = j + 1;
 | |
| 		    ilast = nba;
 | |
| 		    iinc = 1;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (upper) {
 | |
| 		    ifirst = j + 1;
 | |
| 		    ilast = nba;
 | |
| 		    iinc = 1;
 | |
| 		} else {
 | |
| 		    ifirst = j - 1;
 | |
| 		    ilast = 1;
 | |
| 		    iinc = -1;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    i__4 = ilast;
 | |
| 	    i__5 = iinc;
 | |
| 	    for (i__ = ifirst; i__5 < 0 ? i__ >= i__4 : i__ <= i__4; i__ += 
 | |
| 		    i__5) {
 | |
| /*              I1: row index of the first column in X( I, K ) */
 | |
| /*              I2: row index of the first column in X( I+1, K ) */
 | |
| /*              so the I2 - I1 is the row count of the block X( I, K ) */
 | |
| 		i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		i__6 = i__ * nb;
 | |
| 		i2 = f2cmin(i__6,*n) + 1;
 | |
| 
 | |
| /*              Prepare the linear update to be executed with GEMM. */
 | |
| /*              For each column, compute a consistent scaling, a */
 | |
| /*              scaling factor to survive the linear update, and */
 | |
| /*              rescale the column segments, if necesssary. Then */
 | |
| /*              the linear update is safely executed. */
 | |
| 
 | |
| 		i__6 = k2 - k1;
 | |
| 		for (kk = 1; kk <= i__6; ++kk) {
 | |
| 		    rhs = k1 + kk - 1;
 | |
| /*                 Compute consistent scaling */
 | |
| /* Computing MIN */
 | |
| 		    d__1 = work[i__ + kk * lds], d__2 = work[j + kk * lds];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__7 = i2 - i1;
 | |
| 		    bnrm = dlange_("I", &i__7, &c__1, &x[i1 + rhs * x_dim1], 
 | |
| 			    ldx, w);
 | |
| 		    bnrm *= scamin / work[i__ + kk * lds];
 | |
| 		    xnrm[kk - 1] *= scamin / work[j + kk * lds];
 | |
| 		    anrm = work[awrk + i__ + (j - 1) * nba];
 | |
| 		    scaloc = dlarmm_(&anrm, &xnrm[kk - 1], &bnrm);
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to B( I, KK ) and B( J, KK ). */
 | |
| 
 | |
| 		    scal = scamin / work[i__ + kk * lds] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__7 = i2 - i1;
 | |
| 			dscal_(&i__7, &scal, &x[i1 + rhs * x_dim1], &c__1);
 | |
| 			work[i__ + kk * lds] = scamin * scaloc;
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / work[j + kk * lds] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__7 = j2 - j1;
 | |
| 			dscal_(&i__7, &scal, &x[j1 + rhs * x_dim1], &c__1);
 | |
| 			work[j + kk * lds] = scamin * scaloc;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (notran) {
 | |
| 
 | |
| /*                 B( I, K ) := B( I, K ) - A( I, J ) * X( J, K ) */
 | |
| 
 | |
| 		    i__6 = i2 - i1;
 | |
| 		    i__7 = k2 - k1;
 | |
| 		    i__8 = j2 - j1;
 | |
| 		    dgemm_("N", "N", &i__6, &i__7, &i__8, &c_b35, &a[i1 + j1 *
 | |
| 			     a_dim1], lda, &x[j1 + k1 * x_dim1], ldx, &c_b36, 
 | |
| 			    &x[i1 + k1 * x_dim1], ldx);
 | |
| 		} else {
 | |
| 
 | |
| /*                 B( I, K ) := B( I, K ) - A( J, I )**T * X( J, K ) */
 | |
| 
 | |
| 		    i__6 = i2 - i1;
 | |
| 		    i__7 = k2 - k1;
 | |
| 		    i__8 = j2 - j1;
 | |
| 		    dgemm_("T", "N", &i__6, &i__7, &i__8, &c_b35, &a[j1 + i1 *
 | |
| 			     a_dim1], lda, &x[j1 + k1 * x_dim1], ldx, &c_b36, 
 | |
| 			    &x[i1 + k1 * x_dim1], ldx);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Reduce local scaling factors */
 | |
| 
 | |
| 	i__3 = k2 - k1;
 | |
| 	for (kk = 1; kk <= i__3; ++kk) {
 | |
| 	    rhs = k1 + kk - 1;
 | |
| 	    i__2 = nba;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| /* Computing MIN */
 | |
| 		d__1 = scale[rhs], d__2 = work[i__ + kk * lds];
 | |
| 		scale[rhs] = f2cmin(d__1,d__2);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Realize consistent scaling */
 | |
| 
 | |
| 	i__3 = k2 - k1;
 | |
| 	for (kk = 1; kk <= i__3; ++kk) {
 | |
| 	    rhs = k1 + kk - 1;
 | |
| 	    if (scale[rhs] != 1. && scale[rhs] != 0.) {
 | |
| 		i__2 = nba;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__5 = i__ * nb;
 | |
| 		    i2 = f2cmin(i__5,*n) + 1;
 | |
| 		    scal = scale[rhs] / work[i__ + kk * lds];
 | |
| 		    if (scal != 1.) {
 | |
| 			i__5 = i2 - i1;
 | |
| 			dscal_(&i__5, &scal, &x[i1 + rhs * x_dim1], &c__1);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of DLATRS3 */
 | |
| 
 | |
| } /* dlatrs3_ */
 | |
| 
 |