844 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			844 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLATRS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
 | |
| *                          CNORM, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       DOUBLE PRECISION   SCALE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLATRS solves one of the triangular systems
 | |
| *>
 | |
| *>    A *x = s*b  or  A**T *x = s*b
 | |
| *>
 | |
| *> with scaling to prevent overflow.  Here A is an upper or lower
 | |
| *> triangular matrix, A**T denotes the transpose of A, x and b are
 | |
| *> n-element vectors, and s is a scaling factor, usually less than
 | |
| *> or equal to 1, chosen so that the components of x will be less than
 | |
| *> the overflow threshold.  If the unscaled problem will not cause
 | |
| *> overflow, the Level 2 BLAS routine DTRSV is called.  If the matrix A
 | |
| *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
 | |
| *> non-trivial solution to A*x = 0 is returned.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the operation applied to A.
 | |
| *>          = 'N':  Solve A * x = s*b  (No transpose)
 | |
| *>          = 'T':  Solve A**T* x = s*b  (Transpose)
 | |
| *>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NORMIN
 | |
| *> \verbatim
 | |
| *>          NORMIN is CHARACTER*1
 | |
| *>          Specifies whether CNORM has been set or not.
 | |
| *>          = 'Y':  CNORM contains the column norms on entry
 | |
| *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
 | |
| *>                  be computed and stored in CNORM.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | |
| *>          upper triangular part of the array A contains the upper
 | |
| *>          triangular matrix, and the strictly lower triangular part of
 | |
| *>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | |
| *>          triangular part of the array A contains the lower triangular
 | |
| *>          matrix, and the strictly upper triangular part of A is not
 | |
| *>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | |
| *>          also not referenced and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max (1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the right hand side b of the triangular system.
 | |
| *>          On exit, X is overwritten by the solution vector x.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is DOUBLE PRECISION
 | |
| *>          The scaling factor s for the triangular system
 | |
| *>             A * x = s*b  or  A**T* x = s*b.
 | |
| *>          If SCALE = 0, the matrix A is singular or badly scaled, and
 | |
| *>          the vector x is an exact or approximate solution to A*x = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] CNORM
 | |
| *> \verbatim
 | |
| *>          CNORM is DOUBLE PRECISION array, dimension (N)
 | |
| *>
 | |
| *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
 | |
| *>          contains the norm of the off-diagonal part of the j-th column
 | |
| *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
 | |
| *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
 | |
| *>          must be greater than or equal to the 1-norm.
 | |
| *>
 | |
| *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
 | |
| *>          returns the 1-norm of the offdiagonal part of the j-th column
 | |
| *>          of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -k, the k-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  A rough bound on x is computed; if that is less than overflow, DTRSV
 | |
| *>  is called, otherwise, specific code is used which checks for possible
 | |
| *>  overflow or divide-by-zero at every operation.
 | |
| *>
 | |
| *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
 | |
| *>  if A is lower triangular is
 | |
| *>
 | |
| *>       x[1:n] := b[1:n]
 | |
| *>       for j = 1, ..., n
 | |
| *>            x(j) := x(j) / A(j,j)
 | |
| *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
 | |
| *>       end
 | |
| *>
 | |
| *>  Define bounds on the components of x after j iterations of the loop:
 | |
| *>     M(j) = bound on x[1:j]
 | |
| *>     G(j) = bound on x[j+1:n]
 | |
| *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
 | |
| *>
 | |
| *>  Then for iteration j+1 we have
 | |
| *>     M(j+1) <= G(j) / | A(j+1,j+1) |
 | |
| *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
 | |
| *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
 | |
| *>
 | |
| *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
 | |
| *>  column j+1 of A, not counting the diagonal.  Hence
 | |
| *>
 | |
| *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
 | |
| *>                  1<=i<=j
 | |
| *>  and
 | |
| *>
 | |
| *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
 | |
| *>                                   1<=i< j
 | |
| *>
 | |
| *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
 | |
| *>  reciprocal of the largest M(j), j=1,..,n, is larger than
 | |
| *>  max(underflow, 1/overflow).
 | |
| *>
 | |
| *>  The bound on x(j) is also used to determine when a step in the
 | |
| *>  columnwise method can be performed without fear of overflow.  If
 | |
| *>  the computed bound is greater than a large constant, x is scaled to
 | |
| *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
 | |
| *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
 | |
| *>
 | |
| *>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
 | |
| *>  algorithm for A upper triangular is
 | |
| *>
 | |
| *>       for j = 1, ..., n
 | |
| *>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
 | |
| *>       end
 | |
| *>
 | |
| *>  We simultaneously compute two bounds
 | |
| *>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
 | |
| *>       M(j) = bound on x(i), 1<=i<=j
 | |
| *>
 | |
| *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
 | |
| *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
 | |
| *>  Then the bound on x(j) is
 | |
| *>
 | |
| *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
 | |
| *>
 | |
| *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
 | |
| *>                      1<=i<=j
 | |
| *>
 | |
| *>  and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
 | |
| *>  than max(underflow, 1/overflow).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
 | |
|      $                   CNORM, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
|       DOUBLE PRECISION   SCALE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, HALF, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN, NOUNIT, UPPER
 | |
|       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
 | |
|       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
 | |
|      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DASUM, DDOT, DLAMCH, DLANGE
 | |
|       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DSCAL, DTRSV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       NOUNIT = LSAME( DIAG, 'N' )
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | |
|      $         LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
 | |
|      $         LSAME( NORMIN, 'N' ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLATRS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       SCALE = ONE
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine machine dependent parameters to control overflow.
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
|       IF( LSAME( NORMIN, 'N' ) ) THEN
 | |
| *
 | |
| *        Compute the 1-norm of each column, not including the diagonal.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           A is upper triangular.
 | |
| *
 | |
|             DO 10 J = 1, N
 | |
|                CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           A is lower triangular.
 | |
| *
 | |
|             DO 20 J = 1, N - 1
 | |
|                CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
 | |
|    20       CONTINUE
 | |
|             CNORM( N ) = ZERO
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Scale the column norms by TSCAL if the maximum element in CNORM is
 | |
| *     greater than BIGNUM.
 | |
| *
 | |
|       IMAX = IDAMAX( N, CNORM, 1 )
 | |
|       TMAX = CNORM( IMAX )
 | |
|       IF( TMAX.LE.BIGNUM ) THEN
 | |
|          TSCAL = ONE
 | |
|       ELSE
 | |
| *
 | |
| *        Avoid NaN generation if entries in CNORM exceed the
 | |
| *        overflow threshold
 | |
| *
 | |
|          IF( TMAX.LE.DLAMCH('Overflow') ) THEN
 | |
| *           Case 1: All entries in CNORM are valid floating-point numbers
 | |
|             TSCAL = ONE / ( SMLNUM*TMAX )
 | |
|             CALL DSCAL( N, TSCAL, CNORM, 1 )
 | |
|          ELSE
 | |
| *           Case 2: At least one column norm of A cannot be represented
 | |
| *           as floating-point number. Find the offdiagonal entry A( I, J )
 | |
| *           with the largest absolute value. If this entry is not +/- Infinity,
 | |
| *           use this value as TSCAL.
 | |
|             TMAX = ZERO
 | |
|             IF( UPPER ) THEN
 | |
| *
 | |
| *              A is upper triangular.
 | |
| *
 | |
|                DO J = 2, N
 | |
|                   TMAX = MAX( DLANGE( 'M', J-1, 1, A( 1, J ), 1, SUMJ ),
 | |
|      $                        TMAX )
 | |
|                END DO
 | |
|             ELSE
 | |
| *
 | |
| *              A is lower triangular.
 | |
| *
 | |
|                DO J = 1, N - 1
 | |
|                   TMAX = MAX( DLANGE( 'M', N-J, 1, A( J+1, J ), 1,
 | |
|      $                        SUMJ ), TMAX )
 | |
|                END DO
 | |
|             END IF
 | |
| *
 | |
|             IF( TMAX.LE.DLAMCH('Overflow') ) THEN
 | |
|                TSCAL = ONE / ( SMLNUM*TMAX )
 | |
|                DO J = 1, N
 | |
|                   IF( CNORM( J ).LE.DLAMCH('Overflow') ) THEN
 | |
|                      CNORM( J ) = CNORM( J )*TSCAL
 | |
|                   ELSE
 | |
| *                    Recompute the 1-norm without introducing Infinity
 | |
| *                    in the summation
 | |
|                      CNORM( J ) = ZERO
 | |
|                      IF( UPPER ) THEN
 | |
|                         DO I = 1, J - 1
 | |
|                            CNORM( J ) = CNORM( J ) +
 | |
|      $                                  TSCAL * ABS( A( I, J ) )
 | |
|                         END DO
 | |
|                      ELSE
 | |
|                         DO I = J + 1, N
 | |
|                            CNORM( J ) = CNORM( J ) +
 | |
|      $                                  TSCAL * ABS( A( I, J ) )
 | |
|                         END DO
 | |
|                      END IF
 | |
|                   END IF
 | |
|                END DO
 | |
|             ELSE
 | |
| *              At least one entry of A is not a valid floating-point entry.
 | |
| *              Rely on TRSV to propagate Inf and NaN.
 | |
|                CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
 | |
|                RETURN
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Compute a bound on the computed solution vector to see if the
 | |
| *     Level 2 BLAS routine DTRSV can be used.
 | |
| *
 | |
|       J = IDAMAX( N, X, 1 )
 | |
|       XMAX = ABS( X( J ) )
 | |
|       XBND = XMAX
 | |
|       IF( NOTRAN ) THEN
 | |
| *
 | |
| *        Compute the growth in A * x = b.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             JFIRST = N
 | |
|             JLAST = 1
 | |
|             JINC = -1
 | |
|          ELSE
 | |
|             JFIRST = 1
 | |
|             JLAST = N
 | |
|             JINC = 1
 | |
|          END IF
 | |
| *
 | |
|          IF( TSCAL.NE.ONE ) THEN
 | |
|             GROW = ZERO
 | |
|             GO TO 50
 | |
|          END IF
 | |
| *
 | |
|          IF( NOUNIT ) THEN
 | |
| *
 | |
| *           A is non-unit triangular.
 | |
| *
 | |
| *           Compute GROW = 1/G(j) and XBND = 1/M(j).
 | |
| *           Initially, G(0) = max{x(i), i=1,...,n}.
 | |
| *
 | |
|             GROW = ONE / MAX( XBND, SMLNUM )
 | |
|             XBND = GROW
 | |
|             DO 30 J = JFIRST, JLAST, JINC
 | |
| *
 | |
| *              Exit the loop if the growth factor is too small.
 | |
| *
 | |
|                IF( GROW.LE.SMLNUM )
 | |
|      $            GO TO 50
 | |
| *
 | |
| *              M(j) = G(j-1) / abs(A(j,j))
 | |
| *
 | |
|                TJJ = ABS( A( J, J ) )
 | |
|                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
 | |
|                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
 | |
| *
 | |
| *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
 | |
| *
 | |
|                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
 | |
|                ELSE
 | |
| *
 | |
| *                 G(j) could overflow, set GROW to 0.
 | |
| *
 | |
|                   GROW = ZERO
 | |
|                END IF
 | |
|    30       CONTINUE
 | |
|             GROW = XBND
 | |
|          ELSE
 | |
| *
 | |
| *           A is unit triangular.
 | |
| *
 | |
| *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
 | |
| *
 | |
|             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
 | |
|             DO 40 J = JFIRST, JLAST, JINC
 | |
| *
 | |
| *              Exit the loop if the growth factor is too small.
 | |
| *
 | |
|                IF( GROW.LE.SMLNUM )
 | |
|      $            GO TO 50
 | |
| *
 | |
| *              G(j) = G(j-1)*( 1 + CNORM(j) )
 | |
| *
 | |
|                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|    50    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute the growth in A**T * x = b.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             JFIRST = 1
 | |
|             JLAST = N
 | |
|             JINC = 1
 | |
|          ELSE
 | |
|             JFIRST = N
 | |
|             JLAST = 1
 | |
|             JINC = -1
 | |
|          END IF
 | |
| *
 | |
|          IF( TSCAL.NE.ONE ) THEN
 | |
|             GROW = ZERO
 | |
|             GO TO 80
 | |
|          END IF
 | |
| *
 | |
|          IF( NOUNIT ) THEN
 | |
| *
 | |
| *           A is non-unit triangular.
 | |
| *
 | |
| *           Compute GROW = 1/G(j) and XBND = 1/M(j).
 | |
| *           Initially, M(0) = max{x(i), i=1,...,n}.
 | |
| *
 | |
|             GROW = ONE / MAX( XBND, SMLNUM )
 | |
|             XBND = GROW
 | |
|             DO 60 J = JFIRST, JLAST, JINC
 | |
| *
 | |
| *              Exit the loop if the growth factor is too small.
 | |
| *
 | |
|                IF( GROW.LE.SMLNUM )
 | |
|      $            GO TO 80
 | |
| *
 | |
| *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
 | |
| *
 | |
|                XJ = ONE + CNORM( J )
 | |
|                GROW = MIN( GROW, XBND / XJ )
 | |
| *
 | |
| *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
 | |
| *
 | |
|                TJJ = ABS( A( J, J ) )
 | |
|                IF( XJ.GT.TJJ )
 | |
|      $            XBND = XBND*( TJJ / XJ )
 | |
|    60       CONTINUE
 | |
|             GROW = MIN( GROW, XBND )
 | |
|          ELSE
 | |
| *
 | |
| *           A is unit triangular.
 | |
| *
 | |
| *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
 | |
| *
 | |
|             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
 | |
|             DO 70 J = JFIRST, JLAST, JINC
 | |
| *
 | |
| *              Exit the loop if the growth factor is too small.
 | |
| *
 | |
|                IF( GROW.LE.SMLNUM )
 | |
|      $            GO TO 80
 | |
| *
 | |
| *              G(j) = ( 1 + CNORM(j) )*G(j-1)
 | |
| *
 | |
|                XJ = ONE + CNORM( J )
 | |
|                GROW = GROW / XJ
 | |
|    70       CONTINUE
 | |
|          END IF
 | |
|    80    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
 | |
| *
 | |
| *        Use the Level 2 BLAS solve if the reciprocal of the bound on
 | |
| *        elements of X is not too small.
 | |
| *
 | |
|          CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
 | |
|       ELSE
 | |
| *
 | |
| *        Use a Level 1 BLAS solve, scaling intermediate results.
 | |
| *
 | |
|          IF( XMAX.GT.BIGNUM ) THEN
 | |
| *
 | |
| *           Scale X so that its components are less than or equal to
 | |
| *           BIGNUM in absolute value.
 | |
| *
 | |
|             SCALE = BIGNUM / XMAX
 | |
|             CALL DSCAL( N, SCALE, X, 1 )
 | |
|             XMAX = BIGNUM
 | |
|          END IF
 | |
| *
 | |
|          IF( NOTRAN ) THEN
 | |
| *
 | |
| *           Solve A * x = b
 | |
| *
 | |
|             DO 110 J = JFIRST, JLAST, JINC
 | |
| *
 | |
| *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
 | |
| *
 | |
|                XJ = ABS( X( J ) )
 | |
|                IF( NOUNIT ) THEN
 | |
|                   TJJS = A( J, J )*TSCAL
 | |
|                ELSE
 | |
|                   TJJS = TSCAL
 | |
|                   IF( TSCAL.EQ.ONE )
 | |
|      $               GO TO 100
 | |
|                END IF
 | |
|                TJJ = ABS( TJJS )
 | |
|                IF( TJJ.GT.SMLNUM ) THEN
 | |
| *
 | |
| *                    abs(A(j,j)) > SMLNUM:
 | |
| *
 | |
|                   IF( TJJ.LT.ONE ) THEN
 | |
|                      IF( XJ.GT.TJJ*BIGNUM ) THEN
 | |
| *
 | |
| *                          Scale x by 1/b(j).
 | |
| *
 | |
|                         REC = ONE / XJ
 | |
|                         CALL DSCAL( N, REC, X, 1 )
 | |
|                         SCALE = SCALE*REC
 | |
|                         XMAX = XMAX*REC
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   X( J ) = X( J ) / TJJS
 | |
|                   XJ = ABS( X( J ) )
 | |
|                ELSE IF( TJJ.GT.ZERO ) THEN
 | |
| *
 | |
| *                    0 < abs(A(j,j)) <= SMLNUM:
 | |
| *
 | |
|                   IF( XJ.GT.TJJ*BIGNUM ) THEN
 | |
| *
 | |
| *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
 | |
| *                       to avoid overflow when dividing by A(j,j).
 | |
| *
 | |
|                      REC = ( TJJ*BIGNUM ) / XJ
 | |
|                      IF( CNORM( J ).GT.ONE ) THEN
 | |
| *
 | |
| *                          Scale by 1/CNORM(j) to avoid overflow when
 | |
| *                          multiplying x(j) times column j.
 | |
| *
 | |
|                         REC = REC / CNORM( J )
 | |
|                      END IF
 | |
|                      CALL DSCAL( N, REC, X, 1 )
 | |
|                      SCALE = SCALE*REC
 | |
|                      XMAX = XMAX*REC
 | |
|                   END IF
 | |
|                   X( J ) = X( J ) / TJJS
 | |
|                   XJ = ABS( X( J ) )
 | |
|                ELSE
 | |
| *
 | |
| *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
 | |
| *                    scale = 0, and compute a solution to A*x = 0.
 | |
| *
 | |
|                   DO 90 I = 1, N
 | |
|                      X( I ) = ZERO
 | |
|    90             CONTINUE
 | |
|                   X( J ) = ONE
 | |
|                   XJ = ONE
 | |
|                   SCALE = ZERO
 | |
|                   XMAX = ZERO
 | |
|                END IF
 | |
|   100          CONTINUE
 | |
| *
 | |
| *              Scale x if necessary to avoid overflow when adding a
 | |
| *              multiple of column j of A.
 | |
| *
 | |
|                IF( XJ.GT.ONE ) THEN
 | |
|                   REC = ONE / XJ
 | |
|                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
 | |
| *
 | |
| *                    Scale x by 1/(2*abs(x(j))).
 | |
| *
 | |
|                      REC = REC*HALF
 | |
|                      CALL DSCAL( N, REC, X, 1 )
 | |
|                      SCALE = SCALE*REC
 | |
|                   END IF
 | |
|                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
 | |
| *
 | |
| *                 Scale x by 1/2.
 | |
| *
 | |
|                   CALL DSCAL( N, HALF, X, 1 )
 | |
|                   SCALE = SCALE*HALF
 | |
|                END IF
 | |
| *
 | |
|                IF( UPPER ) THEN
 | |
|                   IF( J.GT.1 ) THEN
 | |
| *
 | |
| *                    Compute the update
 | |
| *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
 | |
| *
 | |
|                      CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
 | |
|      $                           1 )
 | |
|                      I = IDAMAX( J-1, X, 1 )
 | |
|                      XMAX = ABS( X( I ) )
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   IF( J.LT.N ) THEN
 | |
| *
 | |
| *                    Compute the update
 | |
| *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
 | |
| *
 | |
|                      CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
 | |
|      $                           X( J+1 ), 1 )
 | |
|                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
 | |
|                      XMAX = ABS( X( I ) )
 | |
|                   END IF
 | |
|                END IF
 | |
|   110       CONTINUE
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Solve A**T * x = b
 | |
| *
 | |
|             DO 160 J = JFIRST, JLAST, JINC
 | |
| *
 | |
| *              Compute x(j) = b(j) - sum A(k,j)*x(k).
 | |
| *                                    k<>j
 | |
| *
 | |
|                XJ = ABS( X( J ) )
 | |
|                USCAL = TSCAL
 | |
|                REC = ONE / MAX( XMAX, ONE )
 | |
|                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
 | |
| *
 | |
| *                 If x(j) could overflow, scale x by 1/(2*XMAX).
 | |
| *
 | |
|                   REC = REC*HALF
 | |
|                   IF( NOUNIT ) THEN
 | |
|                      TJJS = A( J, J )*TSCAL
 | |
|                   ELSE
 | |
|                      TJJS = TSCAL
 | |
|                   END IF
 | |
|                   TJJ = ABS( TJJS )
 | |
|                   IF( TJJ.GT.ONE ) THEN
 | |
| *
 | |
| *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
 | |
| *
 | |
|                      REC = MIN( ONE, REC*TJJ )
 | |
|                      USCAL = USCAL / TJJS
 | |
|                   END IF
 | |
|                   IF( REC.LT.ONE ) THEN
 | |
|                      CALL DSCAL( N, REC, X, 1 )
 | |
|                      SCALE = SCALE*REC
 | |
|                      XMAX = XMAX*REC
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|                SUMJ = ZERO
 | |
|                IF( USCAL.EQ.ONE ) THEN
 | |
| *
 | |
| *                 If the scaling needed for A in the dot product is 1,
 | |
| *                 call DDOT to perform the dot product.
 | |
| *
 | |
|                   IF( UPPER ) THEN
 | |
|                      SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
 | |
|                   ELSE IF( J.LT.N ) THEN
 | |
|                      SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
 | |
|                   END IF
 | |
|                ELSE
 | |
| *
 | |
| *                 Otherwise, use in-line code for the dot product.
 | |
| *
 | |
|                   IF( UPPER ) THEN
 | |
|                      DO 120 I = 1, J - 1
 | |
|                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
 | |
|   120                CONTINUE
 | |
|                   ELSE IF( J.LT.N ) THEN
 | |
|                      DO 130 I = J + 1, N
 | |
|                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
 | |
|   130                CONTINUE
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|                IF( USCAL.EQ.TSCAL ) THEN
 | |
| *
 | |
| *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
 | |
| *                 was not used to scale the dotproduct.
 | |
| *
 | |
|                   X( J ) = X( J ) - SUMJ
 | |
|                   XJ = ABS( X( J ) )
 | |
|                   IF( NOUNIT ) THEN
 | |
|                      TJJS = A( J, J )*TSCAL
 | |
|                   ELSE
 | |
|                      TJJS = TSCAL
 | |
|                      IF( TSCAL.EQ.ONE )
 | |
|      $                  GO TO 150
 | |
|                   END IF
 | |
| *
 | |
| *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
 | |
| *
 | |
|                   TJJ = ABS( TJJS )
 | |
|                   IF( TJJ.GT.SMLNUM ) THEN
 | |
| *
 | |
| *                       abs(A(j,j)) > SMLNUM:
 | |
| *
 | |
|                      IF( TJJ.LT.ONE ) THEN
 | |
|                         IF( XJ.GT.TJJ*BIGNUM ) THEN
 | |
| *
 | |
| *                             Scale X by 1/abs(x(j)).
 | |
| *
 | |
|                            REC = ONE / XJ
 | |
|                            CALL DSCAL( N, REC, X, 1 )
 | |
|                            SCALE = SCALE*REC
 | |
|                            XMAX = XMAX*REC
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      X( J ) = X( J ) / TJJS
 | |
|                   ELSE IF( TJJ.GT.ZERO ) THEN
 | |
| *
 | |
| *                       0 < abs(A(j,j)) <= SMLNUM:
 | |
| *
 | |
|                      IF( XJ.GT.TJJ*BIGNUM ) THEN
 | |
| *
 | |
| *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
 | |
| *
 | |
|                         REC = ( TJJ*BIGNUM ) / XJ
 | |
|                         CALL DSCAL( N, REC, X, 1 )
 | |
|                         SCALE = SCALE*REC
 | |
|                         XMAX = XMAX*REC
 | |
|                      END IF
 | |
|                      X( J ) = X( J ) / TJJS
 | |
|                   ELSE
 | |
| *
 | |
| *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
 | |
| *                       scale = 0, and compute a solution to A**T*x = 0.
 | |
| *
 | |
|                      DO 140 I = 1, N
 | |
|                         X( I ) = ZERO
 | |
|   140                CONTINUE
 | |
|                      X( J ) = ONE
 | |
|                      SCALE = ZERO
 | |
|                      XMAX = ZERO
 | |
|                   END IF
 | |
|   150             CONTINUE
 | |
|                ELSE
 | |
| *
 | |
| *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
 | |
| *                 product has already been divided by 1/A(j,j).
 | |
| *
 | |
|                   X( J ) = X( J ) / TJJS - SUMJ
 | |
|                END IF
 | |
|                XMAX = MAX( XMAX, ABS( X( J ) ) )
 | |
|   160       CONTINUE
 | |
|          END IF
 | |
|          SCALE = SCALE / TSCAL
 | |
|       END IF
 | |
| *
 | |
| *     Scale the column norms by 1/TSCAL for return.
 | |
| *
 | |
|       IF( TSCAL.NE.ONE ) THEN
 | |
|          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLATRS
 | |
| *
 | |
|       END
 |