316 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLASD0 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd0.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd0.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd0.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
 | |
| *                          WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> Using a divide and conquer approach, DLASD0 computes the singular
 | |
| *> value decomposition (SVD) of a real upper bidiagonal N-by-M
 | |
| *> matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
 | |
| *> The algorithm computes orthogonal matrices U and VT such that
 | |
| *> B = U * S * VT. The singular values S are overwritten on D.
 | |
| *>
 | |
| *> A related subroutine, DLASDA, computes only the singular values,
 | |
| *> and optionally, the singular vectors in compact form.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         On entry, the row dimension of the upper bidiagonal matrix.
 | |
| *>         This is also the dimension of the main diagonal array D.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>         Specifies the column dimension of the bidiagonal matrix.
 | |
| *>         = 0: The bidiagonal matrix has column dimension M = N;
 | |
| *>         = 1: The bidiagonal matrix has column dimension M = N+1;
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>         On entry D contains the main diagonal of the bidiagonal
 | |
| *>         matrix.
 | |
| *>         On exit D, if INFO = 0, contains its singular values.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (M-1)
 | |
| *>         Contains the subdiagonal entries of the bidiagonal matrix.
 | |
| *>         On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension (LDU, N)
 | |
| *>         On exit, U contains the left singular vectors, 
 | |
| *>          if U passed in as (N, N) Identity.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>         On entry, leading dimension of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VT
 | |
| *> \verbatim
 | |
| *>          VT is DOUBLE PRECISION array, dimension (LDVT, M)
 | |
| *>         On exit, VT**T contains the right singular vectors,
 | |
| *>          if VT passed in as (M, M) Identity.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>         On entry, leading dimension of VT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SMLSIZ
 | |
| *> \verbatim
 | |
| *>          SMLSIZ is INTEGER
 | |
| *>         On entry, maximum size of the subproblems at the
 | |
| *>         bottom of the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (8*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (3*M**2+2*M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = 1, a singular value did not converge
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
 | |
|      $                   WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
 | |
|      $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
 | |
|      $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
| *
 | |
|       M = N + SQRE
 | |
| *
 | |
|       IF( LDU.LT.N ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDVT.LT.M ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( SMLSIZ.LT.3 ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLASD0', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     If the input matrix is too small, call DLASDQ to find the SVD.
 | |
| *
 | |
|       IF( N.LE.SMLSIZ ) THEN
 | |
|          CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
 | |
|      $                LDU, WORK, INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Set up the computation tree.
 | |
| *
 | |
|       INODE = 1
 | |
|       NDIML = INODE + N
 | |
|       NDIMR = NDIML + N
 | |
|       IDXQ = NDIMR + N
 | |
|       IWK = IDXQ + N
 | |
|       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
 | |
|      $             IWORK( NDIMR ), SMLSIZ )
 | |
| *
 | |
| *     For the nodes on bottom level of the tree, solve
 | |
| *     their subproblems by DLASDQ.
 | |
| *
 | |
|       NDB1 = ( ND+1 ) / 2
 | |
|       NCC = 0
 | |
|       DO 30 I = NDB1, ND
 | |
| *
 | |
| *     IC : center row of each node
 | |
| *     NL : number of rows of left  subproblem
 | |
| *     NR : number of rows of right subproblem
 | |
| *     NLF: starting row of the left   subproblem
 | |
| *     NRF: starting row of the right  subproblem
 | |
| *
 | |
|          I1 = I - 1
 | |
|          IC = IWORK( INODE+I1 )
 | |
|          NL = IWORK( NDIML+I1 )
 | |
|          NLP1 = NL + 1
 | |
|          NR = IWORK( NDIMR+I1 )
 | |
|          NRP1 = NR + 1
 | |
|          NLF = IC - NL
 | |
|          NRF = IC + 1
 | |
|          SQREI = 1
 | |
|          CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
 | |
|      $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
 | |
|      $                U( NLF, NLF ), LDU, WORK, INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|          ITEMP = IDXQ + NLF - 2
 | |
|          DO 10 J = 1, NL
 | |
|             IWORK( ITEMP+J ) = J
 | |
|    10    CONTINUE
 | |
|          IF( I.EQ.ND ) THEN
 | |
|             SQREI = SQRE
 | |
|          ELSE
 | |
|             SQREI = 1
 | |
|          END IF
 | |
|          NRP1 = NR + SQREI
 | |
|          CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
 | |
|      $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
 | |
|      $                U( NRF, NRF ), LDU, WORK, INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|          ITEMP = IDXQ + IC
 | |
|          DO 20 J = 1, NR
 | |
|             IWORK( ITEMP+J-1 ) = J
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Now conquer each subproblem bottom-up.
 | |
| *
 | |
|       DO 50 LVL = NLVL, 1, -1
 | |
| *
 | |
| *        Find the first node LF and last node LL on the
 | |
| *        current level LVL.
 | |
| *
 | |
|          IF( LVL.EQ.1 ) THEN
 | |
|             LF = 1
 | |
|             LL = 1
 | |
|          ELSE
 | |
|             LF = 2**( LVL-1 )
 | |
|             LL = 2*LF - 1
 | |
|          END IF
 | |
|          DO 40 I = LF, LL
 | |
|             IM1 = I - 1
 | |
|             IC = IWORK( INODE+IM1 )
 | |
|             NL = IWORK( NDIML+IM1 )
 | |
|             NR = IWORK( NDIMR+IM1 )
 | |
|             NLF = IC - NL
 | |
|             IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
 | |
|                SQREI = SQRE
 | |
|             ELSE
 | |
|                SQREI = 1
 | |
|             END IF
 | |
|             IDXQC = IDXQ + NLF - 1
 | |
|             ALPHA = D( IC )
 | |
|             BETA = E( IC )
 | |
|             CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
 | |
|      $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
 | |
|      $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
 | |
| *
 | |
| *        Report the possible convergence failure.
 | |
| *
 | |
|             IF( INFO.NE.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|    50 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLASD0
 | |
| *
 | |
|       END
 |