1533 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1533 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b7 = 0.;
 | |
| static doublereal c_b8 = 1.;
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| static integer c__3 = 3;
 | |
| 
 | |
| /* > \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLAQR5 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, */
 | |
| /*                          SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, */
 | |
| /*                          LDU, NV, WV, LDWV, NH, WH, LDWH ) */
 | |
| 
 | |
| /*       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
 | |
| /*      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
 | |
| /*       LOGICAL            WANTT, WANTZ */
 | |
| /*       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ), */
 | |
| /*      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ), */
 | |
| /*      $                   Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    DLAQR5, called by DLAQR0, performs a */
 | |
| /* >    single small-bulge multi-shift QR sweep. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] WANTT */
 | |
| /* > \verbatim */
 | |
| /* >          WANTT is LOGICAL */
 | |
| /* >             WANTT = .true. if the quasi-triangular Schur factor */
 | |
| /* >             is being computed.  WANTT is set to .false. otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTZ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTZ is LOGICAL */
 | |
| /* >             WANTZ = .true. if the orthogonal Schur factor is being */
 | |
| /* >             computed.  WANTZ is set to .false. otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KACC22 */
 | |
| /* > \verbatim */
 | |
| /* >          KACC22 is INTEGER with value 0, 1, or 2. */
 | |
| /* >             Specifies the computation mode of far-from-diagonal */
 | |
| /* >             orthogonal updates. */
 | |
| /* >        = 0: DLAQR5 does not accumulate reflections and does not */
 | |
| /* >             use matrix-matrix multiply to update far-from-diagonal */
 | |
| /* >             matrix entries. */
 | |
| /* >        = 1: DLAQR5 accumulates reflections and uses matrix-matrix */
 | |
| /* >             multiply to update the far-from-diagonal matrix entries. */
 | |
| /* >        = 2: Same as KACC22 = 1. This option used to enable exploiting */
 | |
| /* >             the 2-by-2 structure during matrix multiplications, but */
 | |
| /* >             this is no longer supported. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >             N is the order of the Hessenberg matrix H upon which this */
 | |
| /* >             subroutine operates. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KTOP */
 | |
| /* > \verbatim */
 | |
| /* >          KTOP is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KBOT */
 | |
| /* > \verbatim */
 | |
| /* >          KBOT is INTEGER */
 | |
| /* >             These are the first and last rows and columns of an */
 | |
| /* >             isolated diagonal block upon which the QR sweep is to be */
 | |
| /* >             applied. It is assumed without a check that */
 | |
| /* >                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0 */
 | |
| /* >             and */
 | |
| /* >                       either KBOT = N  or   H(KBOT+1,KBOT) = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NSHFTS */
 | |
| /* > \verbatim */
 | |
| /* >          NSHFTS is INTEGER */
 | |
| /* >             NSHFTS gives the number of simultaneous shifts.  NSHFTS */
 | |
| /* >             must be positive and even. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] SR */
 | |
| /* > \verbatim */
 | |
| /* >          SR is DOUBLE PRECISION array, dimension (NSHFTS) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] SI */
 | |
| /* > \verbatim */
 | |
| /* >          SI is DOUBLE PRECISION array, dimension (NSHFTS) */
 | |
| /* >             SR contains the real parts and SI contains the imaginary */
 | |
| /* >             parts of the NSHFTS shifts of origin that define the */
 | |
| /* >             multi-shift QR sweep.  On output SR and SI may be */
 | |
| /* >             reordered. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is DOUBLE PRECISION array, dimension (LDH,N) */
 | |
| /* >             On input H contains a Hessenberg matrix.  On output a */
 | |
| /* >             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
 | |
| /* >             to the isolated diagonal block in rows and columns KTOP */
 | |
| /* >             through KBOT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >             LDH is the leading dimension of H just as declared in the */
 | |
| /* >             calling procedure.  LDH >= MAX(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILOZ */
 | |
| /* > \verbatim */
 | |
| /* >          ILOZ is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHIZ */
 | |
| /* > \verbatim */
 | |
| /* >          IHIZ is INTEGER */
 | |
| /* >             Specify the rows of Z to which transformations must be */
 | |
| /* >             applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension (LDZ,IHIZ) */
 | |
| /* >             If WANTZ = .TRUE., then the QR Sweep orthogonal */
 | |
| /* >             similarity transformation is accumulated into */
 | |
| /* >             Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
 | |
| /* >             If WANTZ = .FALSE., then Z is unreferenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >             LDA is the leading dimension of Z just as declared in */
 | |
| /* >             the calling procedure. LDZ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is DOUBLE PRECISION array, dimension (LDV,NSHFTS/2) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >             LDV is the leading dimension of V as declared in the */
 | |
| /* >             calling procedure.  LDV >= 3. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is DOUBLE PRECISION array, dimension (LDU,2*NSHFTS) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >             LDU is the leading dimension of U just as declared in the */
 | |
| /* >             in the calling subroutine.  LDU >= 2*NSHFTS. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NV */
 | |
| /* > \verbatim */
 | |
| /* >          NV is INTEGER */
 | |
| /* >             NV is the number of rows in WV agailable for workspace. */
 | |
| /* >             NV >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WV */
 | |
| /* > \verbatim */
 | |
| /* >          WV is DOUBLE PRECISION array, dimension (LDWV,2*NSHFTS) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDWV */
 | |
| /* > \verbatim */
 | |
| /* >          LDWV is INTEGER */
 | |
| /* >             LDWV is the leading dimension of WV as declared in the */
 | |
| /* >             in the calling subroutine.  LDWV >= NV. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \param[in] NH */
 | |
| /* > \verbatim */
 | |
| /* >          NH is INTEGER */
 | |
| /* >             NH is the number of columns in array WH available for */
 | |
| /* >             workspace. NH >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WH */
 | |
| /* > \verbatim */
 | |
| /* >          WH is DOUBLE PRECISION array, dimension (LDWH,NH) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDWH */
 | |
| /* > \verbatim */
 | |
| /* >          LDWH is INTEGER */
 | |
| /* >             Leading dimension of WH just as declared in the */
 | |
| /* >             calling procedure.  LDWH >= 2*NSHFTS. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date January 2021 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >       Karen Braman and Ralph Byers, Department of Mathematics, */
 | |
| /* >       University of Kansas, USA */
 | |
| /* > */
 | |
| /* >       Lars Karlsson, Daniel Kressner, and Bruno Lang */
 | |
| /* > */
 | |
| /* >       Thijs Steel, Department of Computer science, */
 | |
| /* >       KU Leuven, Belgium */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* >       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
 | |
| /* >       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
 | |
| /* >       Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
 | |
| /* >       929--947, 2002. */
 | |
| /* > */
 | |
| /* >       Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
 | |
| /* >       chains of bulges in multishift QR algorithms. */
 | |
| /* >       ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlaqr5_(logical *wantt, logical *wantz, integer *kacc22, 
 | |
| 	integer *n, integer *ktop, integer *kbot, integer *nshfts, doublereal 
 | |
| 	*sr, doublereal *si, doublereal *h__, integer *ldh, integer *iloz, 
 | |
| 	integer *ihiz, doublereal *z__, integer *ldz, doublereal *v, integer *
 | |
| 	ldv, doublereal *u, integer *ldu, integer *nv, doublereal *wv, 
 | |
| 	integer *ldwv, integer *nh, doublereal *wh, integer *ldwh)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1, 
 | |
| 	    wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
 | |
| 	     i__4, i__5, i__6, i__7;
 | |
|     doublereal d__1, d__2, d__3, d__4, d__5;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal beta;
 | |
|     logical bmp22;
 | |
|     integer jcol, jlen, jbot, mbot;
 | |
|     doublereal swap;
 | |
|     integer jtop, jrow, mtop, i__, j, k, m;
 | |
|     doublereal alpha;
 | |
|     logical accum;
 | |
|     extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *);
 | |
|     integer ndcol, incol, krcol, nbmps, i2, k1, i4;
 | |
|     extern /* Subroutine */ void dlaqr1_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *), dlabad_(doublereal *, doublereal *);
 | |
|     doublereal h11, h12, h21, h22;
 | |
|     integer m22;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *);
 | |
|     integer ns, nu;
 | |
|     doublereal vt[3];
 | |
|     extern /* Subroutine */ void dlacpy_(char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     doublereal safmin, safmax;
 | |
|     extern /* Subroutine */ void dlaset_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *);
 | |
|     doublereal refsum, smlnum, scl;
 | |
|     integer kdu, kms;
 | |
|     doublereal ulp;
 | |
|     doublereal tst1, tst2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ================================================================ */
 | |
| 
 | |
| 
 | |
| /*     ==== If there are no shifts, then there is nothing to do. ==== */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --sr;
 | |
|     --si;
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     wv_dim1 = *ldwv;
 | |
|     wv_offset = 1 + wv_dim1 * 1;
 | |
|     wv -= wv_offset;
 | |
|     wh_dim1 = *ldwh;
 | |
|     wh_offset = 1 + wh_dim1 * 1;
 | |
|     wh -= wh_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (*nshfts < 2) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== If the active block is empty or 1-by-1, then there */
 | |
| /*     .    is nothing to do. ==== */
 | |
| 
 | |
|     if (*ktop >= *kbot) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== Shuffle shifts into pairs of real shifts and pairs */
 | |
| /*     .    of complex conjugate shifts assuming complex */
 | |
| /*     .    conjugate shifts are already adjacent to one */
 | |
| /*     .    another. ==== */
 | |
| 
 | |
|     i__1 = *nshfts - 2;
 | |
|     for (i__ = 1; i__ <= i__1; i__ += 2) {
 | |
| 	if (si[i__] != -si[i__ + 1]) {
 | |
| 
 | |
| 	    swap = sr[i__];
 | |
| 	    sr[i__] = sr[i__ + 1];
 | |
| 	    sr[i__ + 1] = sr[i__ + 2];
 | |
| 	    sr[i__ + 2] = swap;
 | |
| 
 | |
| 	    swap = si[i__];
 | |
| 	    si[i__] = si[i__ + 1];
 | |
| 	    si[i__ + 1] = si[i__ + 2];
 | |
| 	    si[i__ + 2] = swap;
 | |
| 	}
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
| /*     ==== NSHFTS is supposed to be even, but if it is odd, */
 | |
| /*     .    then simply reduce it by one.  The shuffle above */
 | |
| /*     .    ensures that the dropped shift is real and that */
 | |
| /*     .    the remaining shifts are paired. ==== */
 | |
| 
 | |
|     ns = *nshfts - *nshfts % 2;
 | |
| 
 | |
| /*     ==== Machine constants for deflation ==== */
 | |
| 
 | |
|     safmin = dlamch_("SAFE MINIMUM");
 | |
|     safmax = 1. / safmin;
 | |
|     dlabad_(&safmin, &safmax);
 | |
|     ulp = dlamch_("PRECISION");
 | |
|     smlnum = safmin * ((doublereal) (*n) / ulp);
 | |
| 
 | |
| /*     ==== Use accumulated reflections to update far-from-diagonal */
 | |
| /*     .    entries ? ==== */
 | |
| 
 | |
|     accum = *kacc22 == 1 || *kacc22 == 2;
 | |
| 
 | |
| /*     ==== clear trash ==== */
 | |
| 
 | |
|     if (*ktop + 2 <= *kbot) {
 | |
| 	h__[*ktop + 2 + *ktop * h_dim1] = 0.;
 | |
|     }
 | |
| 
 | |
| /*     ==== NBMPS = number of 2-shift bulges in the chain ==== */
 | |
| 
 | |
|     nbmps = ns / 2;
 | |
| 
 | |
| /*     ==== KDU = width of slab ==== */
 | |
| 
 | |
|     kdu = nbmps << 2;
 | |
| 
 | |
| /*     ==== Create and chase chains of NBMPS bulges ==== */
 | |
| 
 | |
|     i__1 = *kbot - 2;
 | |
|     i__2 = nbmps << 1;
 | |
|     for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
 | |
| 	     i__1; incol += i__2) {
 | |
| 
 | |
| /*        JTOP = Index from which updates from the right start. */
 | |
| 
 | |
| 	if (accum) {
 | |
| 	    jtop = f2cmax(*ktop,incol);
 | |
| 	} else if (*wantt) {
 | |
| 	    jtop = 1;
 | |
| 	} else {
 | |
| 	    jtop = *ktop;
 | |
| 	}
 | |
| 
 | |
| 	ndcol = incol + kdu;
 | |
| 	if (accum) {
 | |
| 	    dlaset_("ALL", &kdu, &kdu, &c_b7, &c_b8, &u[u_offset], ldu);
 | |
| 	}
 | |
| 
 | |
| /*        ==== Near-the-diagonal bulge chase.  The following loop */
 | |
| /*        .    performs the near-the-diagonal part of a small bulge */
 | |
| /*        .    multi-shift QR sweep.  Each 4*NBMPS column diagonal */
 | |
| /*        .    chunk extends from column INCOL to column NDCOL */
 | |
| /*        .    (including both column INCOL and column NDCOL). The */
 | |
| /*        .    following loop chases a 2*NBMPS+1 column long chain of */
 | |
| /*        .    NBMPS bulges 2*NBMPS columns to the right.  (INCOL */
 | |
| /*        .    may be less than KTOP and and NDCOL may be greater than */
 | |
| /*        .    KBOT indicating phantom columns from which to chase */
 | |
| /*        .    bulges before they are actually introduced or to which */
 | |
| /*        .    to chase bulges beyond column KBOT.)  ==== */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
 | |
| 	i__3 = f2cmin(i__4,i__5);
 | |
| 	for (krcol = incol; krcol <= i__3; ++krcol) {
 | |
| 
 | |
| /*           ==== Bulges number MTOP to MBOT are active double implicit */
 | |
| /*           .    shift bulges.  There may or may not also be small */
 | |
| /*           .    2-by-2 bulge, if there is room.  The inactive bulges */
 | |
| /*           .    (if any) must wait until the active bulges have moved */
 | |
| /*           .    down the diagonal to make room.  The phantom matrix */
 | |
| /*           .    paradigm described above helps keep track.  ==== */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	    i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
 | |
| 	    mtop = f2cmax(i__4,i__5);
 | |
| /* Computing MIN */
 | |
| 	    i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
 | |
| 	    mbot = f2cmin(i__4,i__5);
 | |
| 	    m22 = mbot + 1;
 | |
| 	    bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
 | |
| 
 | |
| /*           ==== Generate reflections to chase the chain right */
 | |
| /*           .    one column.  (The minimum value of K is KTOP-1.) ==== */
 | |
| 
 | |
| 	    if (bmp22) {
 | |
| 
 | |
| /*              ==== Special case: 2-by-2 reflection at bottom treated */
 | |
| /*              .    separately ==== */
 | |
| 
 | |
| 		k = krcol + (m22 - 1 << 1);
 | |
| 		if (k == *ktop - 1) {
 | |
| 		    dlaqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &sr[(
 | |
| 			    m22 << 1) - 1], &si[(m22 << 1) - 1], &sr[m22 * 2],
 | |
| 			     &si[m22 * 2], &v[m22 * v_dim1 + 1]);
 | |
| 		    beta = v[m22 * v_dim1 + 1];
 | |
| 		    dlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22 
 | |
| 			    * v_dim1 + 1]);
 | |
| 		} else {
 | |
| 		    beta = h__[k + 1 + k * h_dim1];
 | |
| 		    v[m22 * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
 | |
| 		    dlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22 
 | |
| 			    * v_dim1 + 1]);
 | |
| 		    h__[k + 1 + k * h_dim1] = beta;
 | |
| 		    h__[k + 2 + k * h_dim1] = 0.;
 | |
| 		}
 | |
| 
 | |
| /*              ==== Perform update from right within */
 | |
| /*              .    computational window. ==== */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__5 = *kbot, i__6 = k + 3;
 | |
| 		i__4 = f2cmin(i__5,i__6);
 | |
| 		for (j = jtop; j <= i__4; ++j) {
 | |
| 		    refsum = v[m22 * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1] 
 | |
| 			    + v[m22 * v_dim1 + 2] * h__[j + (k + 2) * h_dim1])
 | |
| 			    ;
 | |
| 		    h__[j + (k + 1) * h_dim1] -= refsum;
 | |
| 		    h__[j + (k + 2) * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
 | |
| /* L30: */
 | |
| 		}
 | |
| 
 | |
| /*              ==== Perform update from left within */
 | |
| /*              .    computational window. ==== */
 | |
| 
 | |
| 		if (accum) {
 | |
| 		    jbot = f2cmin(ndcol,*kbot);
 | |
| 		} else if (*wantt) {
 | |
| 		    jbot = *n;
 | |
| 		} else {
 | |
| 		    jbot = *kbot;
 | |
| 		}
 | |
| 		i__4 = jbot;
 | |
| 		for (j = k + 1; j <= i__4; ++j) {
 | |
| 		    refsum = v[m22 * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + 
 | |
| 			    v[m22 * v_dim1 + 2] * h__[k + 2 + j * h_dim1]);
 | |
| 		    h__[k + 1 + j * h_dim1] -= refsum;
 | |
| 		    h__[k + 2 + j * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
 | |
| /* L40: */
 | |
| 		}
 | |
| 
 | |
| /*              ==== The following convergence test requires that */
 | |
| /*              .    the tradition small-compared-to-nearby-diagonals */
 | |
| /*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997) */
 | |
| /*              .    criteria both be satisfied.  The latter improves */
 | |
| /*              .    accuracy in some examples. Falling back on an */
 | |
| /*              .    alternate convergence criterion when TST1 or TST2 */
 | |
| /*              .    is zero (as done here) is traditional but probably */
 | |
| /*              .    unnecessary. ==== */
 | |
| 
 | |
| 		if (k >= *ktop) {
 | |
| 		    if (h__[k + 1 + k * h_dim1] != 0.) {
 | |
| 			tst1 = (d__1 = h__[k + k * h_dim1], abs(d__1)) + (
 | |
| 				d__2 = h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				d__2));
 | |
| 			if (tst1 == 0.) {
 | |
| 			    if (k >= *ktop + 1) {
 | |
| 				tst1 += (d__1 = h__[k + (k - 1) * h_dim1], 
 | |
| 					abs(d__1));
 | |
| 			    }
 | |
| 			    if (k >= *ktop + 2) {
 | |
| 				tst1 += (d__1 = h__[k + (k - 2) * h_dim1], 
 | |
| 					abs(d__1));
 | |
| 			    }
 | |
| 			    if (k >= *ktop + 3) {
 | |
| 				tst1 += (d__1 = h__[k + (k - 3) * h_dim1], 
 | |
| 					abs(d__1));
 | |
| 			    }
 | |
| 			    if (k <= *kbot - 2) {
 | |
| 				tst1 += (d__1 = h__[k + 2 + (k + 1) * h_dim1],
 | |
| 					 abs(d__1));
 | |
| 			    }
 | |
| 			    if (k <= *kbot - 3) {
 | |
| 				tst1 += (d__1 = h__[k + 3 + (k + 1) * h_dim1],
 | |
| 					 abs(d__1));
 | |
| 			    }
 | |
| 			    if (k <= *kbot - 4) {
 | |
| 				tst1 += (d__1 = h__[k + 4 + (k + 1) * h_dim1],
 | |
| 					 abs(d__1));
 | |
| 			    }
 | |
| 			}
 | |
| /* Computing MAX */
 | |
| 			d__2 = smlnum, d__3 = ulp * tst1;
 | |
| 			if ((d__1 = h__[k + 1 + k * h_dim1], abs(d__1)) <= 
 | |
| 				f2cmax(d__2,d__3)) {
 | |
| /* Computing MAX */
 | |
| 			    d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1))
 | |
| 				    , d__4 = (d__2 = h__[k + (k + 1) * h_dim1]
 | |
| 				    , abs(d__2));
 | |
| 			    h12 = f2cmax(d__3,d__4);
 | |
| /* Computing MIN */
 | |
| 			    d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1))
 | |
| 				    , d__4 = (d__2 = h__[k + (k + 1) * h_dim1]
 | |
| 				    , abs(d__2));
 | |
| 			    h21 = f2cmin(d__3,d__4);
 | |
| /* Computing MAX */
 | |
| 			    d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				    d__1)), d__4 = (d__2 = h__[k + k * h_dim1]
 | |
| 				     - h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				    d__2));
 | |
| 			    h11 = f2cmax(d__3,d__4);
 | |
| /* Computing MIN */
 | |
| 			    d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				    d__1)), d__4 = (d__2 = h__[k + k * h_dim1]
 | |
| 				     - h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				    d__2));
 | |
| 			    h22 = f2cmin(d__3,d__4);
 | |
| 			    scl = h11 + h12;
 | |
| 			    tst2 = h22 * (h11 / scl);
 | |
| 
 | |
| /* Computing MAX */
 | |
| 			    d__1 = smlnum, d__2 = ulp * tst2;
 | |
| 			    if (tst2 == 0. || h21 * (h12 / scl) <= f2cmax(d__1,
 | |
| 				    d__2)) {
 | |
| 				h__[k + 1 + k * h_dim1] = 0.;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              ==== Accumulate orthogonal transformations. ==== */
 | |
| 
 | |
| 		if (accum) {
 | |
| 		    kms = k - incol;
 | |
| /* Computing MAX */
 | |
| 		    i__4 = 1, i__5 = *ktop - incol;
 | |
| 		    i__6 = kdu;
 | |
| 		    for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
 | |
| 			refsum = v[m22 * v_dim1 + 1] * (u[j + (kms + 1) * 
 | |
| 				u_dim1] + v[m22 * v_dim1 + 2] * u[j + (kms + 
 | |
| 				2) * u_dim1]);
 | |
| 			u[j + (kms + 1) * u_dim1] -= refsum;
 | |
| 			u[j + (kms + 2) * u_dim1] -= refsum * v[m22 * v_dim1 
 | |
| 				+ 2];
 | |
| /* L50: */
 | |
| 		    }
 | |
| 		} else if (*wantz) {
 | |
| 		    i__6 = *ihiz;
 | |
| 		    for (j = *iloz; j <= i__6; ++j) {
 | |
| 			refsum = v[m22 * v_dim1 + 1] * (z__[j + (k + 1) * 
 | |
| 				z_dim1] + v[m22 * v_dim1 + 2] * z__[j + (k + 
 | |
| 				2) * z_dim1]);
 | |
| 			z__[j + (k + 1) * z_dim1] -= refsum;
 | |
| 			z__[j + (k + 2) * z_dim1] -= refsum * v[m22 * v_dim1 
 | |
| 				+ 2];
 | |
| /* L60: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           ==== Normal case: Chain of 3-by-3 reflections ==== */
 | |
| 
 | |
| 	    i__6 = mtop;
 | |
| 	    for (m = mbot; m >= i__6; --m) {
 | |
| 		k = krcol + (m - 1 << 1);
 | |
| 		if (k == *ktop - 1) {
 | |
| 		    dlaqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &sr[(m 
 | |
| 			    << 1) - 1], &si[(m << 1) - 1], &sr[m * 2], &si[m *
 | |
| 			     2], &v[m * v_dim1 + 1]);
 | |
| 		    alpha = v[m * v_dim1 + 1];
 | |
| 		    dlarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m * 
 | |
| 			    v_dim1 + 1]);
 | |
| 		} else {
 | |
| 
 | |
| /*                 ==== Perform delayed transformation of row below */
 | |
| /*                 .    Mth bulge. Exploit fact that first two elements */
 | |
| /*                 .    of row are actually zero. ==== */
 | |
| 
 | |
| 		    refsum = v[m * v_dim1 + 1] * v[m * v_dim1 + 3] * h__[k + 
 | |
| 			    3 + (k + 2) * h_dim1];
 | |
| 		    h__[k + 3 + k * h_dim1] = -refsum;
 | |
| 		    h__[k + 3 + (k + 1) * h_dim1] = -refsum * v[m * v_dim1 + 
 | |
| 			    2];
 | |
| 		    h__[k + 3 + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 + 
 | |
| 			    3];
 | |
| 
 | |
| /*                 ==== Calculate reflection to move */
 | |
| /*                 .    Mth bulge one step. ==== */
 | |
| 
 | |
| 		    beta = h__[k + 1 + k * h_dim1];
 | |
| 		    v[m * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
 | |
| 		    v[m * v_dim1 + 3] = h__[k + 3 + k * h_dim1];
 | |
| 		    dlarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m * 
 | |
| 			    v_dim1 + 1]);
 | |
| 
 | |
| /*                 ==== A Bulge may collapse because of vigilant */
 | |
| /*                 .    deflation or destructive underflow.  In the */
 | |
| /*                 .    underflow case, try the two-small-subdiagonals */
 | |
| /*                 .    trick to try to reinflate the bulge.  ==== */
 | |
| 
 | |
| 		    if (h__[k + 3 + k * h_dim1] != 0. || h__[k + 3 + (k + 1) *
 | |
| 			     h_dim1] != 0. || h__[k + 3 + (k + 2) * h_dim1] ==
 | |
| 			     0.) {
 | |
| 
 | |
| /*                    ==== Typical case: not collapsed (yet). ==== */
 | |
| 
 | |
| 			h__[k + 1 + k * h_dim1] = beta;
 | |
| 			h__[k + 2 + k * h_dim1] = 0.;
 | |
| 			h__[k + 3 + k * h_dim1] = 0.;
 | |
| 		    } else {
 | |
| 
 | |
| /*                    ==== Atypical case: collapsed.  Attempt to */
 | |
| /*                    .    reintroduce ignoring H(K+1,K) and H(K+2,K). */
 | |
| /*                    .    If the fill resulting from the new */
 | |
| /*                    .    reflector is too large, then abandon it. */
 | |
| /*                    .    Otherwise, use the new one. ==== */
 | |
| 
 | |
| 			dlaqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
 | |
| 				sr[(m << 1) - 1], &si[(m << 1) - 1], &sr[m * 
 | |
| 				2], &si[m * 2], vt);
 | |
| 			alpha = vt[0];
 | |
| 			dlarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
 | |
| 			refsum = vt[0] * (h__[k + 1 + k * h_dim1] + vt[1] * 
 | |
| 				h__[k + 2 + k * h_dim1]);
 | |
| 
 | |
| 			if ((d__1 = h__[k + 2 + k * h_dim1] - refsum * vt[1], 
 | |
| 				abs(d__1)) + (d__2 = refsum * vt[2], abs(d__2)
 | |
| 				) > ulp * ((d__3 = h__[k + k * h_dim1], abs(
 | |
| 				d__3)) + (d__4 = h__[k + 1 + (k + 1) * h_dim1]
 | |
| 				, abs(d__4)) + (d__5 = h__[k + 2 + (k + 2) * 
 | |
| 				h_dim1], abs(d__5)))) {
 | |
| 
 | |
| /*                       ==== Starting a new bulge here would */
 | |
| /*                       .    create non-negligible fill.  Use */
 | |
| /*                       .    the old one with trepidation. ==== */
 | |
| 
 | |
| 			    h__[k + 1 + k * h_dim1] = beta;
 | |
| 			    h__[k + 2 + k * h_dim1] = 0.;
 | |
| 			    h__[k + 3 + k * h_dim1] = 0.;
 | |
| 			} else {
 | |
| 
 | |
| /*                       ==== Starting a new bulge here would */
 | |
| /*                       .    create only negligible fill. */
 | |
| /*                       .    Replace the old reflector with */
 | |
| /*                       .    the new one. ==== */
 | |
| 
 | |
| 			    h__[k + 1 + k * h_dim1] -= refsum;
 | |
| 			    h__[k + 2 + k * h_dim1] = 0.;
 | |
| 			    h__[k + 3 + k * h_dim1] = 0.;
 | |
| 			    v[m * v_dim1 + 1] = vt[0];
 | |
| 			    v[m * v_dim1 + 2] = vt[1];
 | |
| 			    v[m * v_dim1 + 3] = vt[2];
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              ====  Apply reflection from the right and */
 | |
| /*              .     the first column of update from the left. */
 | |
| /*              .     These updates are required for the vigilant */
 | |
| /*              .     deflation check. We still delay most of the */
 | |
| /*              .     updates from the left for efficiency. ==== */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__5 = *kbot, i__7 = k + 3;
 | |
| 		i__4 = f2cmin(i__5,i__7);
 | |
| 		for (j = jtop; j <= i__4; ++j) {
 | |
| 		    refsum = v[m * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1] + 
 | |
| 			    v[m * v_dim1 + 2] * h__[j + (k + 2) * h_dim1] + v[
 | |
| 			    m * v_dim1 + 3] * h__[j + (k + 3) * h_dim1]);
 | |
| 		    h__[j + (k + 1) * h_dim1] -= refsum;
 | |
| 		    h__[j + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 + 2];
 | |
| 		    h__[j + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 3];
 | |
| /* L70: */
 | |
| 		}
 | |
| 
 | |
| /*              ==== Perform update from left for subsequent */
 | |
| /*              .    column. ==== */
 | |
| 
 | |
| 		refsum = v[m * v_dim1 + 1] * (h__[k + 1 + (k + 1) * h_dim1] + 
 | |
| 			v[m * v_dim1 + 2] * h__[k + 2 + (k + 1) * h_dim1] + v[
 | |
| 			m * v_dim1 + 3] * h__[k + 3 + (k + 1) * h_dim1]);
 | |
| 		h__[k + 1 + (k + 1) * h_dim1] -= refsum;
 | |
| 		h__[k + 2 + (k + 1) * h_dim1] -= refsum * v[m * v_dim1 + 2];
 | |
| 		h__[k + 3 + (k + 1) * h_dim1] -= refsum * v[m * v_dim1 + 3];
 | |
| 
 | |
| /*              ==== The following convergence test requires that */
 | |
| /*              .    the tradition small-compared-to-nearby-diagonals */
 | |
| /*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997) */
 | |
| /*              .    criteria both be satisfied.  The latter improves */
 | |
| /*              .    accuracy in some examples. Falling back on an */
 | |
| /*              .    alternate convergence criterion when TST1 or TST2 */
 | |
| /*              .    is zero (as done here) is traditional but probably */
 | |
| /*              .    unnecessary. ==== */
 | |
| 
 | |
| 		if (k < *ktop) {
 | |
| 		    mycycle_();
 | |
| 		}
 | |
| 		if (h__[k + 1 + k * h_dim1] != 0.) {
 | |
| 		    tst1 = (d__1 = h__[k + k * h_dim1], abs(d__1)) + (d__2 = 
 | |
| 			    h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
 | |
| 		    if (tst1 == 0.) {
 | |
| 			if (k >= *ktop + 1) {
 | |
| 			    tst1 += (d__1 = h__[k + (k - 1) * h_dim1], abs(
 | |
| 				    d__1));
 | |
| 			}
 | |
| 			if (k >= *ktop + 2) {
 | |
| 			    tst1 += (d__1 = h__[k + (k - 2) * h_dim1], abs(
 | |
| 				    d__1));
 | |
| 			}
 | |
| 			if (k >= *ktop + 3) {
 | |
| 			    tst1 += (d__1 = h__[k + (k - 3) * h_dim1], abs(
 | |
| 				    d__1));
 | |
| 			}
 | |
| 			if (k <= *kbot - 2) {
 | |
| 			    tst1 += (d__1 = h__[k + 2 + (k + 1) * h_dim1], 
 | |
| 				    abs(d__1));
 | |
| 			}
 | |
| 			if (k <= *kbot - 3) {
 | |
| 			    tst1 += (d__1 = h__[k + 3 + (k + 1) * h_dim1], 
 | |
| 				    abs(d__1));
 | |
| 			}
 | |
| 			if (k <= *kbot - 4) {
 | |
| 			    tst1 += (d__1 = h__[k + 4 + (k + 1) * h_dim1], 
 | |
| 				    abs(d__1));
 | |
| 			}
 | |
| 		    }
 | |
| /* Computing MAX */
 | |
| 		    d__2 = smlnum, d__3 = ulp * tst1;
 | |
| 		    if ((d__1 = h__[k + 1 + k * h_dim1], abs(d__1)) <= f2cmax(
 | |
| 			    d__2,d__3)) {
 | |
| /* Computing MAX */
 | |
| 			d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)), 
 | |
| 				d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs(
 | |
| 				d__2));
 | |
| 			h12 = f2cmax(d__3,d__4);
 | |
| /* Computing MIN */
 | |
| 			d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)), 
 | |
| 				d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs(
 | |
| 				d__2));
 | |
| 			h21 = f2cmin(d__3,d__4);
 | |
| /* Computing MAX */
 | |
| 			d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				d__1)), d__4 = (d__2 = h__[k + k * h_dim1] - 
 | |
| 				h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
 | |
| 			h11 = f2cmax(d__3,d__4);
 | |
| /* Computing MIN */
 | |
| 			d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
 | |
| 				d__1)), d__4 = (d__2 = h__[k + k * h_dim1] - 
 | |
| 				h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
 | |
| 			h22 = f2cmin(d__3,d__4);
 | |
| 			scl = h11 + h12;
 | |
| 			tst2 = h22 * (h11 / scl);
 | |
| 
 | |
| /* Computing MAX */
 | |
| 			d__1 = smlnum, d__2 = ulp * tst2;
 | |
| 			if (tst2 == 0. || h21 * (h12 / scl) <= f2cmax(d__1,d__2))
 | |
| 				 {
 | |
| 			    h__[k + 1 + k * h_dim1] = 0.;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| /* L80: */
 | |
| 	    }
 | |
| 
 | |
| /*           ==== Multiply H by reflections from the left ==== */
 | |
| 
 | |
| 	    if (accum) {
 | |
| 		jbot = f2cmin(ndcol,*kbot);
 | |
| 	    } else if (*wantt) {
 | |
| 		jbot = *n;
 | |
| 	    } else {
 | |
| 		jbot = *kbot;
 | |
| 	    }
 | |
| 
 | |
| 	    i__6 = mtop;
 | |
| 	    for (m = mbot; m >= i__6; --m) {
 | |
| 		k = krcol + (m - 1 << 1);
 | |
| /* Computing MAX */
 | |
| 		i__4 = *ktop, i__5 = krcol + (m << 1);
 | |
| 		i__7 = jbot;
 | |
| 		for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
 | |
| 		    refsum = v[m * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + v[
 | |
| 			    m * v_dim1 + 2] * h__[k + 2 + j * h_dim1] + v[m * 
 | |
| 			    v_dim1 + 3] * h__[k + 3 + j * h_dim1]);
 | |
| 		    h__[k + 1 + j * h_dim1] -= refsum;
 | |
| 		    h__[k + 2 + j * h_dim1] -= refsum * v[m * v_dim1 + 2];
 | |
| 		    h__[k + 3 + j * h_dim1] -= refsum * v[m * v_dim1 + 3];
 | |
| /* L90: */
 | |
| 		}
 | |
| /* L100: */
 | |
| 	    }
 | |
| 
 | |
| /*           ==== Accumulate orthogonal transformations. ==== */
 | |
| 
 | |
| 	    if (accum) {
 | |
| 
 | |
| /*              ==== Accumulate U. (If needed, update Z later */
 | |
| /*              .    with an efficient matrix-matrix */
 | |
| /*              .    multiply.) ==== */
 | |
| 
 | |
| 		i__6 = mtop;
 | |
| 		for (m = mbot; m >= i__6; --m) {
 | |
| 		    k = krcol + (m - 1 << 1);
 | |
| 		    kms = k - incol;
 | |
| /* Computing MAX */
 | |
| 		    i__7 = 1, i__4 = *ktop - incol;
 | |
| 		    i2 = f2cmax(i__7,i__4);
 | |
| /* Computing MAX */
 | |
| 		    i__7 = i2, i__4 = kms - (krcol - incol) + 1;
 | |
| 		    i2 = f2cmax(i__7,i__4);
 | |
| /* Computing MIN */
 | |
| 		    i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
 | |
| 		    i4 = f2cmin(i__7,i__4);
 | |
| 		    i__7 = i4;
 | |
| 		    for (j = i2; j <= i__7; ++j) {
 | |
| 			refsum = v[m * v_dim1 + 1] * (u[j + (kms + 1) * 
 | |
| 				u_dim1] + v[m * v_dim1 + 2] * u[j + (kms + 2) 
 | |
| 				* u_dim1] + v[m * v_dim1 + 3] * u[j + (kms + 
 | |
| 				3) * u_dim1]);
 | |
| 			u[j + (kms + 1) * u_dim1] -= refsum;
 | |
| 			u[j + (kms + 2) * u_dim1] -= refsum * v[m * v_dim1 + 
 | |
| 				2];
 | |
| 			u[j + (kms + 3) * u_dim1] -= refsum * v[m * v_dim1 + 
 | |
| 				3];
 | |
| /* L110: */
 | |
| 		    }
 | |
| /* L120: */
 | |
| 		}
 | |
| 	    } else if (*wantz) {
 | |
| 
 | |
| /*              ==== U is not accumulated, so update Z */
 | |
| /*              .    now by multiplying by reflections */
 | |
| /*              .    from the right. ==== */
 | |
| 
 | |
| 		i__6 = mtop;
 | |
| 		for (m = mbot; m >= i__6; --m) {
 | |
| 		    k = krcol + (m - 1 << 1);
 | |
| 		    i__7 = *ihiz;
 | |
| 		    for (j = *iloz; j <= i__7; ++j) {
 | |
| 			refsum = v[m * v_dim1 + 1] * (z__[j + (k + 1) * 
 | |
| 				z_dim1] + v[m * v_dim1 + 2] * z__[j + (k + 2) 
 | |
| 				* z_dim1] + v[m * v_dim1 + 3] * z__[j + (k + 
 | |
| 				3) * z_dim1]);
 | |
| 			z__[j + (k + 1) * z_dim1] -= refsum;
 | |
| 			z__[j + (k + 2) * z_dim1] -= refsum * v[m * v_dim1 + 
 | |
| 				2];
 | |
| 			z__[j + (k + 3) * z_dim1] -= refsum * v[m * v_dim1 + 
 | |
| 				3];
 | |
| /* L130: */
 | |
| 		    }
 | |
| /* L140: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           ==== End of near-the-diagonal bulge chase. ==== */
 | |
| 
 | |
| /* L145: */
 | |
| 	}
 | |
| 
 | |
| /*        ==== Use U (if accumulated) to update far-from-diagonal */
 | |
| /*        .    entries in H.  If required, use U to update Z as */
 | |
| /*        .    well. ==== */
 | |
| 
 | |
| 	if (accum) {
 | |
| 	    if (*wantt) {
 | |
| 		jtop = 1;
 | |
| 		jbot = *n;
 | |
| 	    } else {
 | |
| 		jtop = *ktop;
 | |
| 		jbot = *kbot;
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__6 = *ktop - incol;
 | |
| 	    k1 = f2cmax(i__3,i__6);
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 0, i__6 = ndcol - *kbot;
 | |
| 	    nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
 | |
| 
 | |
| /*           ==== Horizontal Multiply ==== */
 | |
| 
 | |
| 	    i__3 = jbot;
 | |
| 	    i__6 = *nh;
 | |
| 	    for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol 
 | |
| 		    <= i__3; jcol += i__6) {
 | |
| /* Computing MIN */
 | |
| 		i__7 = *nh, i__4 = jbot - jcol + 1;
 | |
| 		jlen = f2cmin(i__7,i__4);
 | |
| 		dgemm_("C", "N", &nu, &jlen, &nu, &c_b8, &u[k1 + k1 * u_dim1],
 | |
| 			 ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b7, &
 | |
| 			wh[wh_offset], ldwh);
 | |
| 		dlacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol + 
 | |
| 			k1 + jcol * h_dim1], ldh);
 | |
| /* L150: */
 | |
| 	    }
 | |
| 
 | |
| /*           ==== Vertical multiply ==== */
 | |
| 
 | |
| 	    i__6 = f2cmax(*ktop,incol) - 1;
 | |
| 	    i__3 = *nv;
 | |
| 	    for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow += 
 | |
| 		    i__3) {
 | |
| /* Computing MIN */
 | |
| 		i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
 | |
| 		jlen = f2cmin(i__7,i__4);
 | |
| 		dgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &h__[jrow + (incol + 
 | |
| 			k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b7, 
 | |
| 			&wv[wv_offset], ldwv);
 | |
| 		dlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
 | |
| 			incol + k1) * h_dim1], ldh);
 | |
| /* L160: */
 | |
| 	    }
 | |
| 
 | |
| /*           ==== Z multiply (also vertical) ==== */
 | |
| 
 | |
| 	    if (*wantz) {
 | |
| 		i__3 = *ihiz;
 | |
| 		i__6 = *nv;
 | |
| 		for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3; 
 | |
| 			jrow += i__6) {
 | |
| /* Computing MIN */
 | |
| 		    i__7 = *nv, i__4 = *ihiz - jrow + 1;
 | |
| 		    jlen = f2cmin(i__7,i__4);
 | |
| 		    dgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &z__[jrow + (
 | |
| 			    incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1], 
 | |
| 			    ldu, &c_b7, &wv[wv_offset], ldwv);
 | |
| 		    dlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
 | |
| 			    jrow + (incol + k1) * z_dim1], ldz);
 | |
| /* L170: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| /* L180: */
 | |
|     }
 | |
| 
 | |
| /*     ==== End of DLAQR5 ==== */
 | |
| 
 | |
|     return;
 | |
| } /* dlaqr5_ */
 | |
| 
 |