309 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLANV2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanv2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanv2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanv2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
 | |
| *> matrix in standard form:
 | |
| *>
 | |
| *>      [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
 | |
| *>      [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
 | |
| *>
 | |
| *> where either
 | |
| *> 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
 | |
| *> 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
 | |
| *> conjugate eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION
 | |
| *>          On entry, the elements of the input matrix.
 | |
| *>          On exit, they are overwritten by the elements of the
 | |
| *>          standardised Schur form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT1R
 | |
| *> \verbatim
 | |
| *>          RT1R is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT1I
 | |
| *> \verbatim
 | |
| *>          RT1I is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT2R
 | |
| *> \verbatim
 | |
| *>          RT2R is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT2I
 | |
| *> \verbatim
 | |
| *>          RT2I is DOUBLE PRECISION
 | |
| *>          The real and imaginary parts of the eigenvalues. If the
 | |
| *>          eigenvalues are a complex conjugate pair, RT1I > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CS
 | |
| *> \verbatim
 | |
| *>          CS is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SN
 | |
| *> \verbatim
 | |
| *>          SN is DOUBLE PRECISION
 | |
| *>          Parameters of the rotation matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Modified by V. Sima, Research Institute for Informatics, Bucharest,
 | |
| *>  Romania, to reduce the risk of cancellation errors,
 | |
| *>  when computing real eigenvalues, and to ensure, if possible, that
 | |
| *>  abs(RT1R) >= abs(RT2R).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
 | |
|      $                     TWO = 2.0D0 )
 | |
|       DOUBLE PRECISION   MULTPL
 | |
|       PARAMETER          ( MULTPL = 4.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
 | |
|      $                   SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z, SAFMIN, 
 | |
|      $                   SAFMN2, SAFMX2
 | |
|       INTEGER            COUNT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DLAPY2
 | |
|       EXTERNAL           DLAMCH, DLAPY2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'S' )
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
 | |
|      $            LOG( DLAMCH( 'B' ) ) / TWO )
 | |
|       SAFMX2 = ONE / SAFMN2
 | |
|       IF( C.EQ.ZERO ) THEN
 | |
|          CS = ONE
 | |
|          SN = ZERO
 | |
| *
 | |
|       ELSE IF( B.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Swap rows and columns
 | |
| *
 | |
|          CS = ZERO
 | |
|          SN = ONE
 | |
|          TEMP = D
 | |
|          D = A
 | |
|          A = TEMP
 | |
|          B = -C
 | |
|          C = ZERO
 | |
| *
 | |
|       ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
 | |
|      $          THEN
 | |
|          CS = ONE
 | |
|          SN = ZERO
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
|          TEMP = A - D
 | |
|          P = HALF*TEMP
 | |
|          BCMAX = MAX( ABS( B ), ABS( C ) )
 | |
|          BCMIS = MIN( ABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
 | |
|          SCALE = MAX( ABS( P ), BCMAX )
 | |
|          Z = ( P / SCALE )*P + ( BCMAX / SCALE )*BCMIS
 | |
| *
 | |
| *        If Z is of the order of the machine accuracy, postpone the
 | |
| *        decision on the nature of eigenvalues
 | |
| *
 | |
|          IF( Z.GE.MULTPL*EPS ) THEN
 | |
| *
 | |
| *           Real eigenvalues. Compute A and D.
 | |
| *
 | |
|             Z = P + SIGN( SQRT( SCALE )*SQRT( Z ), P )
 | |
|             A = D + Z
 | |
|             D = D - ( BCMAX / Z )*BCMIS
 | |
| *
 | |
| *           Compute B and the rotation matrix
 | |
| *
 | |
|             TAU = DLAPY2( C, Z )
 | |
|             CS = Z / TAU
 | |
|             SN = C / TAU
 | |
|             B = B - C
 | |
|             C = ZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Complex eigenvalues, or real (almost) equal eigenvalues.
 | |
| *           Make diagonal elements equal.
 | |
| *
 | |
|             COUNT = 0
 | |
|             SIGMA = B + C
 | |
|    10       CONTINUE
 | |
|             COUNT = COUNT + 1
 | |
|             SCALE = MAX( ABS(TEMP), ABS(SIGMA) )
 | |
|             IF( SCALE.GE.SAFMX2 ) THEN
 | |
|                SIGMA = SIGMA * SAFMN2
 | |
|                TEMP = TEMP * SAFMN2
 | |
|                IF (COUNT .LE. 20)
 | |
|      $            GOTO 10
 | |
|             END IF
 | |
|             IF( SCALE.LE.SAFMN2 ) THEN
 | |
|                SIGMA = SIGMA * SAFMX2
 | |
|                TEMP = TEMP * SAFMX2
 | |
|                IF (COUNT .LE. 20)
 | |
|      $            GOTO 10
 | |
|             END IF
 | |
|             P = HALF*TEMP
 | |
|             TAU = DLAPY2( SIGMA, TEMP )
 | |
|             CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
 | |
|             SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
 | |
| *
 | |
| *           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
 | |
| *                   [ CC  DD ]   [ C  D ] [ SN  CS ]
 | |
| *
 | |
|             AA = A*CS + B*SN
 | |
|             BB = -A*SN + B*CS
 | |
|             CC = C*CS + D*SN
 | |
|             DD = -C*SN + D*CS
 | |
| *
 | |
| *           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
 | |
| *                   [ C  D ]   [-SN  CS ] [ CC  DD ]
 | |
| *
 | |
|             A = AA*CS + CC*SN
 | |
|             B = BB*CS + DD*SN
 | |
|             C = -AA*SN + CC*CS
 | |
|             D = -BB*SN + DD*CS
 | |
| *
 | |
|             TEMP = HALF*( A+D )
 | |
|             A = TEMP
 | |
|             D = TEMP
 | |
| *
 | |
|             IF( C.NE.ZERO ) THEN
 | |
|                IF( B.NE.ZERO ) THEN
 | |
|                   IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
 | |
| *
 | |
| *                    Real eigenvalues: reduce to upper triangular form
 | |
| *
 | |
|                      SAB = SQRT( ABS( B ) )
 | |
|                      SAC = SQRT( ABS( C ) )
 | |
|                      P = SIGN( SAB*SAC, C )
 | |
|                      TAU = ONE / SQRT( ABS( B+C ) )
 | |
|                      A = TEMP + P
 | |
|                      D = TEMP - P
 | |
|                      B = B - C
 | |
|                      C = ZERO
 | |
|                      CS1 = SAB*TAU
 | |
|                      SN1 = SAC*TAU
 | |
|                      TEMP = CS*CS1 - SN*SN1
 | |
|                      SN = CS*SN1 + SN*CS1
 | |
|                      CS = TEMP
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   B = -C
 | |
|                   C = ZERO
 | |
|                   TEMP = CS
 | |
|                   CS = -SN
 | |
|                   SN = TEMP
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
 | |
| *
 | |
|       RT1R = A
 | |
|       RT2R = D
 | |
|       IF( C.EQ.ZERO ) THEN
 | |
|          RT1I = ZERO
 | |
|          RT2I = ZERO
 | |
|       ELSE
 | |
|          RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
 | |
|          RT2I = -RT1I
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLANV2
 | |
| *
 | |
|       END
 |