184 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLANST + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLANST  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the  element of  largest absolute value  of a
 | |
| *> real symmetric tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return DLANST
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in DLANST as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The (n-1) sub-diagonal or super-diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   ANORM, SCALE, SUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       EXTERNAL           LSAME, DISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          ANORM = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          ANORM = ABS( D( N ) )
 | |
|          DO 10 I = 1, N - 1
 | |
|             SUM = ABS( D( I ) )
 | |
|             IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | |
|             SUM = ABS( E( I ) )
 | |
|             IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | |
|    10    CONTINUE
 | |
|       ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
 | |
|      $         LSAME( NORM, 'I' ) ) THEN
 | |
| *
 | |
| *        Find norm1(A).
 | |
| *
 | |
|          IF( N.EQ.1 ) THEN
 | |
|             ANORM = ABS( D( 1 ) )
 | |
|          ELSE
 | |
|             ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
 | |
|             SUM = ABS( E( N-1 ) )+ABS( D( N ) )
 | |
|             IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | |
|             DO 20 I = 2, N - 1
 | |
|                SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
 | |
|                IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *
 | |
|          SCALE = ZERO
 | |
|          SUM = ONE
 | |
|          IF( N.GT.1 ) THEN
 | |
|             CALL DLASSQ( N-1, E, 1, SCALE, SUM )
 | |
|             SUM = 2*SUM
 | |
|          END IF
 | |
|          CALL DLASSQ( N, D, 1, SCALE, SUM )
 | |
|          ANORM = SCALE*SQRT( SUM )
 | |
|       END IF
 | |
| *
 | |
|       DLANST = ANORM
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLANST
 | |
| *
 | |
|       END
 |