515 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			515 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLALSD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
 | |
| *                          RANK, WORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 | |
| *       DOUBLE PRECISION   RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLALSD uses the singular value decomposition of A to solve the least
 | |
| *> squares problem of finding X to minimize the Euclidean norm of each
 | |
| *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
 | |
| *> are N-by-NRHS. The solution X overwrites B.
 | |
| *>
 | |
| *> The singular values of A smaller than RCOND times the largest
 | |
| *> singular value are treated as zero in solving the least squares
 | |
| *> problem; in this case a minimum norm solution is returned.
 | |
| *> The actual singular values are returned in D in ascending order.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>         = 'U': D and E define an upper bidiagonal matrix.
 | |
| *>         = 'L': D and E define a  lower bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SMLSIZ
 | |
| *> \verbatim
 | |
| *>          SMLSIZ is INTEGER
 | |
| *>         The maximum size of the subproblems at the bottom of the
 | |
| *>         computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the  bidiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>         The number of columns of B. NRHS must be at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>         On entry D contains the main diagonal of the bidiagonal
 | |
| *>         matrix. On exit, if INFO = 0, D contains its singular values.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>         Contains the super-diagonal entries of the bidiagonal matrix.
 | |
| *>         On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>         On input, B contains the right hand sides of the least
 | |
| *>         squares problem. On output, B contains the solution X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>         The leading dimension of B in the calling subprogram.
 | |
| *>         LDB must be at least max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>         The singular values of A less than or equal to RCOND times
 | |
| *>         the largest singular value are treated as zero in solving
 | |
| *>         the least squares problem. If RCOND is negative,
 | |
| *>         machine precision is used instead.
 | |
| *>         For example, if diag(S)*X=B were the least squares problem,
 | |
| *>         where diag(S) is a diagonal matrix of singular values, the
 | |
| *>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
 | |
| *>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
 | |
| *>         RCOND*max(S).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RANK
 | |
| *> \verbatim
 | |
| *>          RANK is INTEGER
 | |
| *>         The number of singular values of A greater than RCOND times
 | |
| *>         the largest singular value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension at least
 | |
| *>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
 | |
| *>         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension at least
 | |
| *>         (3*N*NLVL + 11*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>         = 0:  successful exit.
 | |
| *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>         > 0:  The algorithm failed to compute a singular value while
 | |
| *>               working on the submatrix lying in rows and columns
 | |
| *>               INFO/(N+1) through MOD(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
 | |
|      $                   RANK, WORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 | |
|       DOUBLE PRECISION   RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
 | |
|      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
 | |
|      $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
 | |
|      $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
 | |
|       DOUBLE PRECISION   CS, EPS, ORGNRM, R, RCND, SN, TOL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST
 | |
|       EXTERNAL           IDAMAX, DLAMCH, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
 | |
|      $                   DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLALSD', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Set up the tolerance.
 | |
| *
 | |
|       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
 | |
|          RCND = EPS
 | |
|       ELSE
 | |
|          RCND = RCOND
 | |
|       END IF
 | |
| *
 | |
|       RANK = 0
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.1 ) THEN
 | |
|          IF( D( 1 ).EQ.ZERO ) THEN
 | |
|             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
 | |
|          ELSE
 | |
|             RANK = 1
 | |
|             CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
 | |
|             D( 1 ) = ABS( D( 1 ) )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Rotate the matrix if it is lower bidiagonal.
 | |
| *
 | |
|       IF( UPLO.EQ.'L' ) THEN
 | |
|          DO 10 I = 1, N - 1
 | |
|             CALL DLARTG( D( I ), E( I ), CS, SN, R )
 | |
|             D( I ) = R
 | |
|             E( I ) = SN*D( I+1 )
 | |
|             D( I+1 ) = CS*D( I+1 )
 | |
|             IF( NRHS.EQ.1 ) THEN
 | |
|                CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
 | |
|             ELSE
 | |
|                WORK( I*2-1 ) = CS
 | |
|                WORK( I*2 ) = SN
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|          IF( NRHS.GT.1 ) THEN
 | |
|             DO 30 I = 1, NRHS
 | |
|                DO 20 J = 1, N - 1
 | |
|                   CS = WORK( J*2-1 )
 | |
|                   SN = WORK( J*2 )
 | |
|                   CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
 | |
|    20          CONTINUE
 | |
|    30       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Scale.
 | |
| *
 | |
|       NM1 = N - 1
 | |
|       ORGNRM = DLANST( 'M', N, D, E )
 | |
|       IF( ORGNRM.EQ.ZERO ) THEN
 | |
|          CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
 | |
|       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
 | |
| *
 | |
| *     If N is smaller than the minimum divide size SMLSIZ, then solve
 | |
| *     the problem with another solver.
 | |
| *
 | |
|       IF( N.LE.SMLSIZ ) THEN
 | |
|          NWORK = 1 + N*N
 | |
|          CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
 | |
|          CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
 | |
|      $                LDB, WORK( NWORK ), INFO )
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
 | |
|          DO 40 I = 1, N
 | |
|             IF( D( I ).LE.TOL ) THEN
 | |
|                CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
 | |
|             ELSE
 | |
|                CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
 | |
|      $                      LDB, INFO )
 | |
|                RANK = RANK + 1
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|          CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
 | |
|      $               WORK( NWORK ), N )
 | |
|          CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
 | |
| *
 | |
| *        Unscale.
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | |
|          CALL DLASRT( 'D', N, D, INFO )
 | |
|          CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
 | |
| *
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Book-keeping and setting up some constants.
 | |
| *
 | |
|       NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
 | |
| *
 | |
|       SMLSZP = SMLSIZ + 1
 | |
| *
 | |
|       U = 1
 | |
|       VT = 1 + SMLSIZ*N
 | |
|       DIFL = VT + SMLSZP*N
 | |
|       DIFR = DIFL + NLVL*N
 | |
|       Z = DIFR + NLVL*N*2
 | |
|       C = Z + NLVL*N
 | |
|       S = C + N
 | |
|       POLES = S + N
 | |
|       GIVNUM = POLES + 2*NLVL*N
 | |
|       BX = GIVNUM + 2*NLVL*N
 | |
|       NWORK = BX + N*NRHS
 | |
| *
 | |
|       SIZEI = 1 + N
 | |
|       K = SIZEI + N
 | |
|       GIVPTR = K + N
 | |
|       PERM = GIVPTR + N
 | |
|       GIVCOL = PERM + NLVL*N
 | |
|       IWK = GIVCOL + NLVL*N*2
 | |
| *
 | |
|       ST = 1
 | |
|       SQRE = 0
 | |
|       ICMPQ1 = 1
 | |
|       ICMPQ2 = 0
 | |
|       NSUB = 0
 | |
| *
 | |
|       DO 50 I = 1, N
 | |
|          IF( ABS( D( I ) ).LT.EPS ) THEN
 | |
|             D( I ) = SIGN( EPS, D( I ) )
 | |
|          END IF
 | |
|    50 CONTINUE
 | |
| *
 | |
|       DO 60 I = 1, NM1
 | |
|          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
 | |
|             NSUB = NSUB + 1
 | |
|             IWORK( NSUB ) = ST
 | |
| *
 | |
| *           Subproblem found. First determine its size and then
 | |
| *           apply divide and conquer on it.
 | |
| *
 | |
|             IF( I.LT.NM1 ) THEN
 | |
| *
 | |
| *              A subproblem with E(I) small for I < NM1.
 | |
| *
 | |
|                NSIZE = I - ST + 1
 | |
|                IWORK( SIZEI+NSUB-1 ) = NSIZE
 | |
|             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
 | |
| *
 | |
| *              A subproblem with E(NM1) not too small but I = NM1.
 | |
| *
 | |
|                NSIZE = N - ST + 1
 | |
|                IWORK( SIZEI+NSUB-1 ) = NSIZE
 | |
|             ELSE
 | |
| *
 | |
| *              A subproblem with E(NM1) small. This implies an
 | |
| *              1-by-1 subproblem at D(N), which is not solved
 | |
| *              explicitly.
 | |
| *
 | |
|                NSIZE = I - ST + 1
 | |
|                IWORK( SIZEI+NSUB-1 ) = NSIZE
 | |
|                NSUB = NSUB + 1
 | |
|                IWORK( NSUB ) = N
 | |
|                IWORK( SIZEI+NSUB-1 ) = 1
 | |
|                CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
 | |
|             END IF
 | |
|             ST1 = ST - 1
 | |
|             IF( NSIZE.EQ.1 ) THEN
 | |
| *
 | |
| *              This is a 1-by-1 subproblem and is not solved
 | |
| *              explicitly.
 | |
| *
 | |
|                CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
 | |
|             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
 | |
| *
 | |
| *              This is a small subproblem and is solved by DLASDQ.
 | |
| *
 | |
|                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
 | |
|      $                      WORK( VT+ST1 ), N )
 | |
|                CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
 | |
|      $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
 | |
|      $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   RETURN
 | |
|                END IF
 | |
|                CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
 | |
|      $                      WORK( BX+ST1 ), N )
 | |
|             ELSE
 | |
| *
 | |
| *              A large problem. Solve it using divide and conquer.
 | |
| *
 | |
|                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
 | |
|      $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
 | |
|      $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
 | |
|      $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
 | |
|      $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
 | |
|      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
 | |
|      $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
 | |
|      $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
 | |
|      $                      INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   RETURN
 | |
|                END IF
 | |
|                BXST = BX + ST1
 | |
|                CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
 | |
|      $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
 | |
|      $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
 | |
|      $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
 | |
|      $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
 | |
|      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
 | |
|      $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
 | |
|      $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
 | |
|      $                      IWORK( IWK ), INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   RETURN
 | |
|                END IF
 | |
|             END IF
 | |
|             ST = I + 1
 | |
|          END IF
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     Apply the singular values and treat the tiny ones as zero.
 | |
| *
 | |
|       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
 | |
| *
 | |
|       DO 70 I = 1, N
 | |
| *
 | |
| *        Some of the elements in D can be negative because 1-by-1
 | |
| *        subproblems were not solved explicitly.
 | |
| *
 | |
|          IF( ABS( D( I ) ).LE.TOL ) THEN
 | |
|             CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
 | |
|          ELSE
 | |
|             RANK = RANK + 1
 | |
|             CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
 | |
|      $                   WORK( BX+I-1 ), N, INFO )
 | |
|          END IF
 | |
|          D( I ) = ABS( D( I ) )
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Now apply back the right singular vectors.
 | |
| *
 | |
|       ICMPQ2 = 1
 | |
|       DO 80 I = 1, NSUB
 | |
|          ST = IWORK( I )
 | |
|          ST1 = ST - 1
 | |
|          NSIZE = IWORK( SIZEI+I-1 )
 | |
|          BXST = BX + ST1
 | |
|          IF( NSIZE.EQ.1 ) THEN
 | |
|             CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
 | |
|          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
 | |
|             CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
 | |
|      $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
 | |
|      $                  B( ST, 1 ), LDB )
 | |
|          ELSE
 | |
|             CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
 | |
|      $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
 | |
|      $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
 | |
|      $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
 | |
|      $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
 | |
|      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
 | |
|      $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
 | |
|      $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
 | |
|      $                   IWORK( IWK ), INFO )
 | |
|             IF( INFO.NE.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
|          END IF
 | |
|    80 CONTINUE
 | |
| *
 | |
| *     Unscale and sort the singular values.
 | |
| *
 | |
|       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | |
|       CALL DLASRT( 'D', N, D, INFO )
 | |
|       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLALSD
 | |
| *
 | |
|       END
 |