491 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLALSA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
 | |
| *                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
 | |
| *                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
 | |
| *                          IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
 | |
| *      $                   SMLSIZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
 | |
| *      $                   K( * ), PERM( LDGCOL, * )
 | |
| *       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
 | |
| *      $                   DIFL( LDU, * ), DIFR( LDU, * ),
 | |
| *      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
 | |
| *      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
 | |
| *      $                   Z( LDU, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLALSA is an intermediate step in solving the least squares problem
 | |
| *> by computing the SVD of the coefficient matrix in compact form (The
 | |
| *> singular vectors are computed as products of simple orthogonal
 | |
| *> matrices.).
 | |
| *>
 | |
| *> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
 | |
| *> matrix of an upper bidiagonal matrix to the right hand side; and if
 | |
| *> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
 | |
| *> right hand side. The singular vector matrices were generated in
 | |
| *> compact form by DLALSA.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ICOMPQ
 | |
| *> \verbatim
 | |
| *>          ICOMPQ is INTEGER
 | |
| *>         Specifies whether the left or the right singular vector
 | |
| *>         matrix is involved.
 | |
| *>         = 0: Left singular vector matrix
 | |
| *>         = 1: Right singular vector matrix
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SMLSIZ
 | |
| *> \verbatim
 | |
| *>          SMLSIZ is INTEGER
 | |
| *>         The maximum size of the subproblems at the bottom of the
 | |
| *>         computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The row and column dimensions of the upper bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>         The number of columns of B and BX. NRHS must be at least 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
 | |
| *>         On input, B contains the right hand sides of the least
 | |
| *>         squares problem in rows 1 through M.
 | |
| *>         On output, B contains the solution X in rows 1 through N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>         The leading dimension of B in the calling subprogram.
 | |
| *>         LDB must be at least max(1,MAX( M, N ) ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BX
 | |
| *> \verbatim
 | |
| *>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
 | |
| *>         On exit, the result of applying the left or right singular
 | |
| *>         vector matrix to B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDBX
 | |
| *> \verbatim
 | |
| *>          LDBX is INTEGER
 | |
| *>         The leading dimension of BX.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
 | |
| *>         On entry, U contains the left singular vector matrices of all
 | |
| *>         subproblems at the bottom level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER, LDU = > N.
 | |
| *>         The leading dimension of arrays U, VT, DIFL, DIFR,
 | |
| *>         POLES, GIVNUM, and Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VT
 | |
| *> \verbatim
 | |
| *>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
 | |
| *>         On entry, VT**T contains the right singular vector matrices of
 | |
| *>         all subproblems at the bottom level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER array, dimension ( N ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIFL
 | |
| *> \verbatim
 | |
| *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
 | |
| *>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIFR
 | |
| *> \verbatim
 | |
| *>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
 | |
| *>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
 | |
| *>         distances between singular values on the I-th level and
 | |
| *>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
 | |
| *>         record the normalizing factors of the right singular vectors
 | |
| *>         matrices of subproblems on I-th level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
 | |
| *>         On entry, Z(1, I) contains the components of the deflation-
 | |
| *>         adjusted updating row vector for subproblems on the I-th
 | |
| *>         level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] POLES
 | |
| *> \verbatim
 | |
| *>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
 | |
| *>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
 | |
| *>         singular values involved in the secular equations on the I-th
 | |
| *>         level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVPTR
 | |
| *> \verbatim
 | |
| *>          GIVPTR is INTEGER array, dimension ( N ).
 | |
| *>         On entry, GIVPTR( I ) records the number of Givens
 | |
| *>         rotations performed on the I-th problem on the computation
 | |
| *>         tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVCOL
 | |
| *> \verbatim
 | |
| *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
 | |
| *>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
 | |
| *>         locations of Givens rotations performed on the I-th level on
 | |
| *>         the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDGCOL
 | |
| *> \verbatim
 | |
| *>          LDGCOL is INTEGER, LDGCOL = > N.
 | |
| *>         The leading dimension of arrays GIVCOL and PERM.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PERM
 | |
| *> \verbatim
 | |
| *>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
 | |
| *>         On entry, PERM(*, I) records permutations done on the I-th
 | |
| *>         level of the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVNUM
 | |
| *> \verbatim
 | |
| *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
 | |
| *>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
 | |
| *>         values of Givens rotations performed on the I-th level on the
 | |
| *>         computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension ( N ).
 | |
| *>         On entry, if the I-th subproblem is not square,
 | |
| *>         C( I ) contains the C-value of a Givens rotation related to
 | |
| *>         the right null space of the I-th subproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension ( N ).
 | |
| *>         On entry, if the I-th subproblem is not square,
 | |
| *>         S( I ) contains the S-value of a Givens rotation related to
 | |
| *>         the right null space of the I-th subproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | |
| *>       California at Berkeley, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
 | |
|      $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
 | |
|      $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
 | |
|      $                   IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
 | |
|      $                   SMLSIZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
 | |
|      $                   K( * ), PERM( LDGCOL, * )
 | |
|       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
 | |
|      $                   DIFL( LDU, * ), DIFR( LDU, * ),
 | |
|      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
 | |
|      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
 | |
|      $                   Z( LDU, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
 | |
|      $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
 | |
|      $                   NR, NRF, NRP1, SQRE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( SMLSIZ.LT.3 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.SMLSIZ ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDB.LT.N ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDBX.LT.N ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDU.LT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDGCOL.LT.N ) THEN
 | |
|          INFO = -19
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLALSA', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Book-keeping and  setting up the computation tree.
 | |
| *
 | |
|       INODE = 1
 | |
|       NDIML = INODE + N
 | |
|       NDIMR = NDIML + N
 | |
| *
 | |
|       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
 | |
|      $             IWORK( NDIMR ), SMLSIZ )
 | |
| *
 | |
| *     The following code applies back the left singular vector factors.
 | |
| *     For applying back the right singular vector factors, go to 50.
 | |
| *
 | |
|       IF( ICOMPQ.EQ.1 ) THEN
 | |
|          GO TO 50
 | |
|       END IF
 | |
| *
 | |
| *     The nodes on the bottom level of the tree were solved
 | |
| *     by DLASDQ. The corresponding left and right singular vector
 | |
| *     matrices are in explicit form. First apply back the left
 | |
| *     singular vector matrices.
 | |
| *
 | |
|       NDB1 = ( ND+1 ) / 2
 | |
|       DO 10 I = NDB1, ND
 | |
| *
 | |
| *        IC : center row of each node
 | |
| *        NL : number of rows of left  subproblem
 | |
| *        NR : number of rows of right subproblem
 | |
| *        NLF: starting row of the left   subproblem
 | |
| *        NRF: starting row of the right  subproblem
 | |
| *
 | |
|          I1 = I - 1
 | |
|          IC = IWORK( INODE+I1 )
 | |
|          NL = IWORK( NDIML+I1 )
 | |
|          NR = IWORK( NDIMR+I1 )
 | |
|          NLF = IC - NL
 | |
|          NRF = IC + 1
 | |
|          CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
 | |
|      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
 | |
|          CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
 | |
|      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Next copy the rows of B that correspond to unchanged rows
 | |
| *     in the bidiagonal matrix to BX.
 | |
| *
 | |
|       DO 20 I = 1, ND
 | |
|          IC = IWORK( INODE+I-1 )
 | |
|          CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Finally go through the left singular vector matrices of all
 | |
| *     the other subproblems bottom-up on the tree.
 | |
| *
 | |
|       J = 2**NLVL
 | |
|       SQRE = 0
 | |
| *
 | |
|       DO 40 LVL = NLVL, 1, -1
 | |
|          LVL2 = 2*LVL - 1
 | |
| *
 | |
| *        find the first node LF and last node LL on
 | |
| *        the current level LVL
 | |
| *
 | |
|          IF( LVL.EQ.1 ) THEN
 | |
|             LF = 1
 | |
|             LL = 1
 | |
|          ELSE
 | |
|             LF = 2**( LVL-1 )
 | |
|             LL = 2*LF - 1
 | |
|          END IF
 | |
|          DO 30 I = LF, LL
 | |
|             IM1 = I - 1
 | |
|             IC = IWORK( INODE+IM1 )
 | |
|             NL = IWORK( NDIML+IM1 )
 | |
|             NR = IWORK( NDIMR+IM1 )
 | |
|             NLF = IC - NL
 | |
|             NRF = IC + 1
 | |
|             J = J - 1
 | |
|             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
 | |
|      $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
 | |
|      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
 | |
|      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
 | |
|      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
 | |
|      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
 | |
|      $                   INFO )
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
|       GO TO 90
 | |
| *
 | |
| *     ICOMPQ = 1: applying back the right singular vector factors.
 | |
| *
 | |
|    50 CONTINUE
 | |
| *
 | |
| *     First now go through the right singular vector matrices of all
 | |
| *     the tree nodes top-down.
 | |
| *
 | |
|       J = 0
 | |
|       DO 70 LVL = 1, NLVL
 | |
|          LVL2 = 2*LVL - 1
 | |
| *
 | |
| *        Find the first node LF and last node LL on
 | |
| *        the current level LVL.
 | |
| *
 | |
|          IF( LVL.EQ.1 ) THEN
 | |
|             LF = 1
 | |
|             LL = 1
 | |
|          ELSE
 | |
|             LF = 2**( LVL-1 )
 | |
|             LL = 2*LF - 1
 | |
|          END IF
 | |
|          DO 60 I = LL, LF, -1
 | |
|             IM1 = I - 1
 | |
|             IC = IWORK( INODE+IM1 )
 | |
|             NL = IWORK( NDIML+IM1 )
 | |
|             NR = IWORK( NDIMR+IM1 )
 | |
|             NLF = IC - NL
 | |
|             NRF = IC + 1
 | |
|             IF( I.EQ.LL ) THEN
 | |
|                SQRE = 0
 | |
|             ELSE
 | |
|                SQRE = 1
 | |
|             END IF
 | |
|             J = J + 1
 | |
|             CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
 | |
|      $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
 | |
|      $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
 | |
|      $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
 | |
|      $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
 | |
|      $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
 | |
|      $                   INFO )
 | |
|    60    CONTINUE
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     The nodes on the bottom level of the tree were solved
 | |
| *     by DLASDQ. The corresponding right singular vector
 | |
| *     matrices are in explicit form. Apply them back.
 | |
| *
 | |
|       NDB1 = ( ND+1 ) / 2
 | |
|       DO 80 I = NDB1, ND
 | |
|          I1 = I - 1
 | |
|          IC = IWORK( INODE+I1 )
 | |
|          NL = IWORK( NDIML+I1 )
 | |
|          NR = IWORK( NDIMR+I1 )
 | |
|          NLP1 = NL + 1
 | |
|          IF( I.EQ.ND ) THEN
 | |
|             NRP1 = NR
 | |
|          ELSE
 | |
|             NRP1 = NR + 1
 | |
|          END IF
 | |
|          NLF = IC - NL
 | |
|          NRF = IC + 1
 | |
|          CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
 | |
|      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
 | |
|          CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
 | |
|      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
 | |
|    80 CONTINUE
 | |
| *
 | |
|    90 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLALSA
 | |
| *
 | |
|       END
 |