1157 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1157 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLALN2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaln2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaln2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaln2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, */
 | |
| /*                          LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) */
 | |
| 
 | |
| /*       LOGICAL            LTRANS */
 | |
| /*       INTEGER            INFO, LDA, LDB, LDX, NA, NW */
 | |
| /*       DOUBLE PRECISION   CA, D1, D2, SCALE, SMIN, WI, WR, XNORM */
 | |
| /*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DLALN2 solves a system of the form  (ca A - w D ) X = s B */
 | |
| /* > or (ca A**T - w D) X = s B   with possible scaling ("s") and */
 | |
| /* > perturbation of A.  (A**T means A-transpose.) */
 | |
| /* > */
 | |
| /* > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
 | |
| /* > real diagonal matrix, w is a real or complex value, and X and B are */
 | |
| /* > NA x 1 matrices -- real if w is real, complex if w is complex.  NA */
 | |
| /* > may be 1 or 2. */
 | |
| /* > */
 | |
| /* > If w is complex, X and B are represented as NA x 2 matrices, */
 | |
| /* > the first column of each being the real part and the second */
 | |
| /* > being the imaginary part. */
 | |
| /* > */
 | |
| /* > "s" is a scaling factor (<= 1), computed by DLALN2, which is */
 | |
| /* > so chosen that X can be computed without overflow.  X is further */
 | |
| /* > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
 | |
| /* > than overflow. */
 | |
| /* > */
 | |
| /* > If both singular values of (ca A - w D) are less than SMIN, */
 | |
| /* > SMIN*identity will be used instead of (ca A - w D).  If only one */
 | |
| /* > singular value is less than SMIN, one element of (ca A - w D) will be */
 | |
| /* > perturbed enough to make the smallest singular value roughly SMIN. */
 | |
| /* > If both singular values are at least SMIN, (ca A - w D) will not be */
 | |
| /* > perturbed.  In any case, the perturbation will be at most some small */
 | |
| /* > multiple of f2cmax( SMIN, ulp*norm(ca A - w D) ).  The singular values */
 | |
| /* > are computed by infinity-norm approximations, and thus will only be */
 | |
| /* > correct to a factor of 2 or so. */
 | |
| /* > */
 | |
| /* > Note: all input quantities are assumed to be smaller than overflow */
 | |
| /* > by a reasonable factor.  (See BIGNUM.) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] LTRANS */
 | |
| /* > \verbatim */
 | |
| /* >          LTRANS is LOGICAL */
 | |
| /* >          =.TRUE.:  A-transpose will be used. */
 | |
| /* >          =.FALSE.: A will be used (not transposed.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NA */
 | |
| /* > \verbatim */
 | |
| /* >          NA is INTEGER */
 | |
| /* >          The size of the matrix A.  It may (only) be 1 or 2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NW */
 | |
| /* > \verbatim */
 | |
| /* >          NW is INTEGER */
 | |
| /* >          1 if "w" is real, 2 if "w" is complex.  It may only be 1 */
 | |
| /* >          or 2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SMIN */
 | |
| /* > \verbatim */
 | |
| /* >          SMIN is DOUBLE PRECISION */
 | |
| /* >          The desired lower bound on the singular values of A.  This */
 | |
| /* >          should be a safe distance away from underflow or overflow, */
 | |
| /* >          say, between (underflow/machine precision) and  (machine */
 | |
| /* >          precision * overflow ).  (See BIGNUM and ULP.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CA */
 | |
| /* > \verbatim */
 | |
| /* >          CA is DOUBLE PRECISION */
 | |
| /* >          The coefficient c, which A is multiplied by. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,NA) */
 | |
| /* >          The NA x NA matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A.  It must be at least NA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D1 */
 | |
| /* > \verbatim */
 | |
| /* >          D1 is DOUBLE PRECISION */
 | |
| /* >          The 1,1 element in the diagonal matrix D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D2 */
 | |
| /* > \verbatim */
 | |
| /* >          D2 is DOUBLE PRECISION */
 | |
| /* >          The 2,2 element in the diagonal matrix D.  Not used if NA=1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is DOUBLE PRECISION array, dimension (LDB,NW) */
 | |
| /* >          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is */
 | |
| /* >          complex), column 1 contains the real part of B and column 2 */
 | |
| /* >          contains the imaginary part. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of B.  It must be at least NA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WR */
 | |
| /* > \verbatim */
 | |
| /* >          WR is DOUBLE PRECISION */
 | |
| /* >          The real part of the scalar "w". */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WI */
 | |
| /* > \verbatim */
 | |
| /* >          WI is DOUBLE PRECISION */
 | |
| /* >          The imaginary part of the scalar "w".  Not used if NW=1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is DOUBLE PRECISION array, dimension (LDX,NW) */
 | |
| /* >          The NA x NW matrix X (unknowns), as computed by DLALN2. */
 | |
| /* >          If NW=2 ("w" is complex), on exit, column 1 will contain */
 | |
| /* >          the real part of X and column 2 will contain the imaginary */
 | |
| /* >          part. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of X.  It must be at least NA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is DOUBLE PRECISION */
 | |
| /* >          The scale factor that B must be multiplied by to insure */
 | |
| /* >          that overflow does not occur when computing X.  Thus, */
 | |
| /* >          (ca A - w D) X  will be SCALE*B, not B (ignoring */
 | |
| /* >          perturbations of A.)  It will be at most 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] XNORM */
 | |
| /* > \verbatim */
 | |
| /* >          XNORM is DOUBLE PRECISION */
 | |
| /* >          The infinity-norm of X, when X is regarded as an NA x NW */
 | |
| /* >          real matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          An error flag.  It will be set to zero if no error occurs, */
 | |
| /* >          a negative number if an argument is in error, or a positive */
 | |
| /* >          number if  ca A - w D  had to be perturbed. */
 | |
| /* >          The possible values are: */
 | |
| /* >          = 0: No error occurred, and (ca A - w D) did not have to be */
 | |
| /* >                 perturbed. */
 | |
| /* >          = 1: (ca A - w D) had to be perturbed to make its smallest */
 | |
| /* >               (or only) singular value greater than SMIN. */
 | |
| /* >          NOTE: In the interests of speed, this routine does not */
 | |
| /* >                check the inputs for errors. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERauxiliary */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlaln2_(logical *ltrans, integer *na, integer *nw, 
 | |
| 	doublereal *smin, doublereal *ca, doublereal *a, integer *lda, 
 | |
| 	doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, 
 | |
| 	doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, 
 | |
| 	doublereal *scale, doublereal *xnorm, integer *info)
 | |
| {
 | |
|     /* Initialized data */
 | |
| 
 | |
|     static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
 | |
|     static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
 | |
|     static integer ipivot[16]	/* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
 | |
| 	    4,3,2,1 };
 | |
| 
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
 | |
|     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 | |
|     static doublereal equiv_0[4], equiv_1[4];
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s;
 | |
|     integer j;
 | |
|     doublereal u22abs;
 | |
|     integer icmax;
 | |
|     doublereal bnorm, cnorm, smini;
 | |
| #define ci (equiv_0)
 | |
| #define cr (equiv_1)
 | |
|     extern doublereal dlamch_(char *);
 | |
|     extern /* Subroutine */ void dladiv_(doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *);
 | |
|     doublereal bignum, bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, ci21, 
 | |
| 	    ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
 | |
| #define civ (equiv_0)
 | |
|     doublereal csr, ur11, ur12, ur22;
 | |
| #define crv (equiv_1)
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
| 
 | |
| /*     Compute BIGNUM */
 | |
| 
 | |
|     smlnum = 2. * dlamch_("Safe minimum");
 | |
|     bignum = 1. / smlnum;
 | |
|     smini = f2cmax(*smin,smlnum);
 | |
| 
 | |
| /*     Don't check for input errors */
 | |
| 
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Standard Initializations */
 | |
| 
 | |
|     *scale = 1.;
 | |
| 
 | |
|     if (*na == 1) {
 | |
| 
 | |
| /*        1 x 1  (i.e., scalar) system   C X = B */
 | |
| 
 | |
| 	if (*nw == 1) {
 | |
| 
 | |
| /*           Real 1x1 system. */
 | |
| 
 | |
| /*           C = ca A - w D */
 | |
| 
 | |
| 	    csr = *ca * a[a_dim1 + 1] - *wr * *d1;
 | |
| 	    cnorm = abs(csr);
 | |
| 
 | |
| /*           If | C | < SMINI, use C = SMINI */
 | |
| 
 | |
| 	    if (cnorm < smini) {
 | |
| 		csr = smini;
 | |
| 		cnorm = smini;
 | |
| 		*info = 1;
 | |
| 	    }
 | |
| 
 | |
| /*           Check scaling for  X = B / C */
 | |
| 
 | |
| 	    bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
 | |
| 	    if (cnorm < 1. && bnorm > 1.) {
 | |
| 		if (bnorm > bignum * cnorm) {
 | |
| 		    *scale = 1. / bnorm;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Compute X */
 | |
| 
 | |
| 	    x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
 | |
| 	    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
 | |
| 	} else {
 | |
| 
 | |
| /*           Complex 1x1 system (w is complex) */
 | |
| 
 | |
| /*           C = ca A - w D */
 | |
| 
 | |
| 	    csr = *ca * a[a_dim1 + 1] - *wr * *d1;
 | |
| 	    csi = -(*wi) * *d1;
 | |
| 	    cnorm = abs(csr) + abs(csi);
 | |
| 
 | |
| /*           If | C | < SMINI, use C = SMINI */
 | |
| 
 | |
| 	    if (cnorm < smini) {
 | |
| 		csr = smini;
 | |
| 		csi = 0.;
 | |
| 		cnorm = smini;
 | |
| 		*info = 1;
 | |
| 	    }
 | |
| 
 | |
| /*           Check scaling for  X = B / C */
 | |
| 
 | |
| 	    bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 
 | |
| 		    1) + 1], abs(d__2));
 | |
| 	    if (cnorm < 1. && bnorm > 1.) {
 | |
| 		if (bnorm > bignum * cnorm) {
 | |
| 		    *scale = 1. / bnorm;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Compute X */
 | |
| 
 | |
| 	    d__1 = *scale * b[b_dim1 + 1];
 | |
| 	    d__2 = *scale * b[(b_dim1 << 1) + 1];
 | |
| 	    dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
 | |
| 		     + 1]);
 | |
| 	    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 
 | |
| 		    1) + 1], abs(d__2));
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        2x2 System */
 | |
| 
 | |
| /*        Compute the real part of  C = ca A - w D  (or  ca A**T - w D ) */
 | |
| 
 | |
| 	cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
 | |
| 	cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
 | |
| 	if (*ltrans) {
 | |
| 	    cr[2] = *ca * a[a_dim1 + 2];
 | |
| 	    cr[1] = *ca * a[(a_dim1 << 1) + 1];
 | |
| 	} else {
 | |
| 	    cr[1] = *ca * a[a_dim1 + 2];
 | |
| 	    cr[2] = *ca * a[(a_dim1 << 1) + 1];
 | |
| 	}
 | |
| 
 | |
| 	if (*nw == 1) {
 | |
| 
 | |
| /*           Real 2x2 system  (w is real) */
 | |
| 
 | |
| /*           Find the largest element in C */
 | |
| 
 | |
| 	    cmax = 0.;
 | |
| 	    icmax = 0;
 | |
| 
 | |
| 	    for (j = 1; j <= 4; ++j) {
 | |
| 		if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
 | |
| 		    cmax = (d__1 = crv[j - 1], abs(d__1));
 | |
| 		    icmax = j;
 | |
| 		}
 | |
| /* L10: */
 | |
| 	    }
 | |
| 
 | |
| /*           If norm(C) < SMINI, use SMINI*identity. */
 | |
| 
 | |
| 	    if (cmax < smini) {
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
 | |
| 			b_dim1 + 2], abs(d__2));
 | |
| 		bnorm = f2cmax(d__3,d__4);
 | |
| 		if (smini < 1. && bnorm > 1.) {
 | |
| 		    if (bnorm > bignum * smini) {
 | |
| 			*scale = 1. / bnorm;
 | |
| 		    }
 | |
| 		}
 | |
| 		temp = *scale / smini;
 | |
| 		x[x_dim1 + 1] = temp * b[b_dim1 + 1];
 | |
| 		x[x_dim1 + 2] = temp * b[b_dim1 + 2];
 | |
| 		*xnorm = temp * bnorm;
 | |
| 		*info = 1;
 | |
| 		return;
 | |
| 	    }
 | |
| 
 | |
| /*           Gaussian elimination with complete pivoting. */
 | |
| 
 | |
| 	    ur11 = crv[icmax - 1];
 | |
| 	    cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
 | |
| 	    ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
 | |
| 	    cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
 | |
| 	    ur11r = 1. / ur11;
 | |
| 	    lr21 = ur11r * cr21;
 | |
| 	    ur22 = cr22 - ur12 * lr21;
 | |
| 
 | |
| /*           If smaller pivot < SMINI, use SMINI */
 | |
| 
 | |
| 	    if (abs(ur22) < smini) {
 | |
| 		ur22 = smini;
 | |
| 		*info = 1;
 | |
| 	    }
 | |
| 	    if (rswap[icmax - 1]) {
 | |
| 		br1 = b[b_dim1 + 2];
 | |
| 		br2 = b[b_dim1 + 1];
 | |
| 	    } else {
 | |
| 		br1 = b[b_dim1 + 1];
 | |
| 		br2 = b[b_dim1 + 2];
 | |
| 	    }
 | |
| 	    br2 -= lr21 * br1;
 | |
| /* Computing MAX */
 | |
| 	    d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
 | |
| 	    bbnd = f2cmax(d__2,d__3);
 | |
| 	    if (bbnd > 1. && abs(ur22) < 1.) {
 | |
| 		if (bbnd >= bignum * abs(ur22)) {
 | |
| 		    *scale = 1. / bbnd;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    xr2 = br2 * *scale / ur22;
 | |
| 	    xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
 | |
| 	    if (zswap[icmax - 1]) {
 | |
| 		x[x_dim1 + 1] = xr2;
 | |
| 		x[x_dim1 + 2] = xr1;
 | |
| 	    } else {
 | |
| 		x[x_dim1 + 1] = xr1;
 | |
| 		x[x_dim1 + 2] = xr2;
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    d__1 = abs(xr1), d__2 = abs(xr2);
 | |
| 	    *xnorm = f2cmax(d__1,d__2);
 | |
| 
 | |
| /*           Further scaling if  norm(A) norm(X) > overflow */
 | |
| 
 | |
| 	    if (*xnorm > 1. && cmax > 1.) {
 | |
| 		if (*xnorm > bignum / cmax) {
 | |
| 		    temp = cmax / bignum;
 | |
| 		    x[x_dim1 + 1] = temp * x[x_dim1 + 1];
 | |
| 		    x[x_dim1 + 2] = temp * x[x_dim1 + 2];
 | |
| 		    *xnorm = temp * *xnorm;
 | |
| 		    *scale = temp * *scale;
 | |
| 		}
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Complex 2x2 system  (w is complex) */
 | |
| 
 | |
| /*           Find the largest element in C */
 | |
| 
 | |
| 	    ci[0] = -(*wi) * *d1;
 | |
| 	    ci[1] = 0.;
 | |
| 	    ci[2] = 0.;
 | |
| 	    ci[3] = -(*wi) * *d2;
 | |
| 	    cmax = 0.;
 | |
| 	    icmax = 0;
 | |
| 
 | |
| 	    for (j = 1; j <= 4; ++j) {
 | |
| 		if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
 | |
| 			d__2)) > cmax) {
 | |
| 		    cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
 | |
| 			    , abs(d__2));
 | |
| 		    icmax = j;
 | |
| 		}
 | |
| /* L20: */
 | |
| 	    }
 | |
| 
 | |
| /*           If norm(C) < SMINI, use SMINI*identity. */
 | |
| 
 | |
| 	    if (cmax < smini) {
 | |
| /* Computing MAX */
 | |
| 		d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 
 | |
| 			<< 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], 
 | |
| 			abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
 | |
| 		bnorm = f2cmax(d__5,d__6);
 | |
| 		if (smini < 1. && bnorm > 1.) {
 | |
| 		    if (bnorm > bignum * smini) {
 | |
| 			*scale = 1. / bnorm;
 | |
| 		    }
 | |
| 		}
 | |
| 		temp = *scale / smini;
 | |
| 		x[x_dim1 + 1] = temp * b[b_dim1 + 1];
 | |
| 		x[x_dim1 + 2] = temp * b[b_dim1 + 2];
 | |
| 		x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
 | |
| 		x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
 | |
| 		*xnorm = temp * bnorm;
 | |
| 		*info = 1;
 | |
| 		return;
 | |
| 	    }
 | |
| 
 | |
| /*           Gaussian elimination with complete pivoting. */
 | |
| 
 | |
| 	    ur11 = crv[icmax - 1];
 | |
| 	    ui11 = civ[icmax - 1];
 | |
| 	    cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
 | |
| 	    ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
 | |
| 	    ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
 | |
| 	    ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
 | |
| 	    cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
 | |
| 	    ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
 | |
| 	    if (icmax == 1 || icmax == 4) {
 | |
| 
 | |
| /*              Code when off-diagonals of pivoted C are real */
 | |
| 
 | |
| 		if (abs(ur11) > abs(ui11)) {
 | |
| 		    temp = ui11 / ur11;
 | |
| /* Computing 2nd power */
 | |
| 		    d__1 = temp;
 | |
| 		    ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
 | |
| 		    ui11r = -temp * ur11r;
 | |
| 		} else {
 | |
| 		    temp = ur11 / ui11;
 | |
| /* Computing 2nd power */
 | |
| 		    d__1 = temp;
 | |
| 		    ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
 | |
| 		    ur11r = -temp * ui11r;
 | |
| 		}
 | |
| 		lr21 = cr21 * ur11r;
 | |
| 		li21 = cr21 * ui11r;
 | |
| 		ur12s = ur12 * ur11r;
 | |
| 		ui12s = ur12 * ui11r;
 | |
| 		ur22 = cr22 - ur12 * lr21;
 | |
| 		ui22 = ci22 - ur12 * li21;
 | |
| 	    } else {
 | |
| 
 | |
| /*              Code when diagonals of pivoted C are real */
 | |
| 
 | |
| 		ur11r = 1. / ur11;
 | |
| 		ui11r = 0.;
 | |
| 		lr21 = cr21 * ur11r;
 | |
| 		li21 = ci21 * ur11r;
 | |
| 		ur12s = ur12 * ur11r;
 | |
| 		ui12s = ui12 * ur11r;
 | |
| 		ur22 = cr22 - ur12 * lr21 + ui12 * li21;
 | |
| 		ui22 = -ur12 * li21 - ui12 * lr21;
 | |
| 	    }
 | |
| 	    u22abs = abs(ur22) + abs(ui22);
 | |
| 
 | |
| /*           If smaller pivot < SMINI, use SMINI */
 | |
| 
 | |
| 	    if (u22abs < smini) {
 | |
| 		ur22 = smini;
 | |
| 		ui22 = 0.;
 | |
| 		*info = 1;
 | |
| 	    }
 | |
| 	    if (rswap[icmax - 1]) {
 | |
| 		br2 = b[b_dim1 + 1];
 | |
| 		br1 = b[b_dim1 + 2];
 | |
| 		bi2 = b[(b_dim1 << 1) + 1];
 | |
| 		bi1 = b[(b_dim1 << 1) + 2];
 | |
| 	    } else {
 | |
| 		br1 = b[b_dim1 + 1];
 | |
| 		br2 = b[b_dim1 + 2];
 | |
| 		bi1 = b[(b_dim1 << 1) + 1];
 | |
| 		bi2 = b[(b_dim1 << 1) + 2];
 | |
| 	    }
 | |
| 	    br2 = br2 - lr21 * br1 + li21 * bi1;
 | |
| 	    bi2 = bi2 - li21 * br1 - lr21 * bi1;
 | |
| /* Computing MAX */
 | |
| 	    d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
 | |
| 		    ), d__2 = abs(br2) + abs(bi2);
 | |
| 	    bbnd = f2cmax(d__1,d__2);
 | |
| 	    if (bbnd > 1. && u22abs < 1.) {
 | |
| 		if (bbnd >= bignum * u22abs) {
 | |
| 		    *scale = 1. / bbnd;
 | |
| 		    br1 = *scale * br1;
 | |
| 		    bi1 = *scale * bi1;
 | |
| 		    br2 = *scale * br2;
 | |
| 		    bi2 = *scale * bi2;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
 | |
| 	    xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
 | |
| 	    xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
 | |
| 	    if (zswap[icmax - 1]) {
 | |
| 		x[x_dim1 + 1] = xr2;
 | |
| 		x[x_dim1 + 2] = xr1;
 | |
| 		x[(x_dim1 << 1) + 1] = xi2;
 | |
| 		x[(x_dim1 << 1) + 2] = xi1;
 | |
| 	    } else {
 | |
| 		x[x_dim1 + 1] = xr1;
 | |
| 		x[x_dim1 + 2] = xr2;
 | |
| 		x[(x_dim1 << 1) + 1] = xi1;
 | |
| 		x[(x_dim1 << 1) + 2] = xi2;
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
 | |
| 	    *xnorm = f2cmax(d__1,d__2);
 | |
| 
 | |
| /*           Further scaling if  norm(A) norm(X) > overflow */
 | |
| 
 | |
| 	    if (*xnorm > 1. && cmax > 1.) {
 | |
| 		if (*xnorm > bignum / cmax) {
 | |
| 		    temp = cmax / bignum;
 | |
| 		    x[x_dim1 + 1] = temp * x[x_dim1 + 1];
 | |
| 		    x[x_dim1 + 2] = temp * x[x_dim1 + 2];
 | |
| 		    x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
 | |
| 		    x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
 | |
| 		    *xnorm = temp * *xnorm;
 | |
| 		    *scale = temp * *scale;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DLALN2 */
 | |
| 
 | |
| } /* dlaln2_ */
 | |
| 
 | |
| #undef crv
 | |
| #undef civ
 | |
| #undef cr
 | |
| #undef ci
 | |
| 
 | |
| 
 |