891 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			891 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b4 = -1.;
 | |
| static doublereal c_b5 = 1.;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b38 = 0.;
 | |
| 
 | |
| /* > \brief \b DLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that 
 | |
| elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to 
 | |
| apply the transformation to the unreduced part */
 | |
| /* of A. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLAHR2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahr2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahr2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahr2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */
 | |
| 
 | |
| /*       INTEGER            K, LDA, LDT, LDY, N, NB */
 | |
| /*       DOUBLE PRECISION  A( LDA, * ), T( LDT, NB ), TAU( NB ), */
 | |
| /*      $                   Y( LDY, NB ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1) */
 | |
| /* > matrix A so that elements below the k-th subdiagonal are zero. The */
 | |
| /* > reduction is performed by an orthogonal similarity transformation */
 | |
| /* > Q**T * A * Q. The routine returns the matrices V and T which determine */
 | |
| /* > Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. */
 | |
| /* > */
 | |
| /* > This is an auxiliary routine called by DGEHRD. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >          The offset for the reduction. Elements below the k-th */
 | |
| /* >          subdiagonal in the first NB columns are reduced to zero. */
 | |
| /* >          K < N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NB */
 | |
| /* > \verbatim */
 | |
| /* >          NB is INTEGER */
 | |
| /* >          The number of columns to be reduced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N-K+1) */
 | |
| /* >          On entry, the n-by-(n-k+1) general matrix A. */
 | |
| /* >          On exit, the elements on and above the k-th subdiagonal in */
 | |
| /* >          the first NB columns are overwritten with the corresponding */
 | |
| /* >          elements of the reduced matrix; the elements below the k-th */
 | |
| /* >          subdiagonal, with the array TAU, represent the matrix Q as a */
 | |
| /* >          product of elementary reflectors. The other columns of A are */
 | |
| /* >          unchanged. See Further Details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] TAU */
 | |
| /* > \verbatim */
 | |
| /* >          TAU is DOUBLE PRECISION array, dimension (NB) */
 | |
| /* >          The scalar factors of the elementary reflectors. See Further */
 | |
| /* >          Details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is DOUBLE PRECISION array, dimension (LDT,NB) */
 | |
| /* >          The upper triangular matrix T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T.  LDT >= NB. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Y */
 | |
| /* > \verbatim */
 | |
| /* >          Y is DOUBLE PRECISION array, dimension (LDY,NB) */
 | |
| /* >          The n-by-nb matrix Y. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDY */
 | |
| /* > \verbatim */
 | |
| /* >          LDY is INTEGER */
 | |
| /* >          The leading dimension of the array Y. LDY >= N. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The matrix Q is represented as a product of nb elementary reflectors */
 | |
| /* > */
 | |
| /* >     Q = H(1) H(2) . . . H(nb). */
 | |
| /* > */
 | |
| /* >  Each H(i) has the form */
 | |
| /* > */
 | |
| /* >     H(i) = I - tau * v * v**T */
 | |
| /* > */
 | |
| /* >  where tau is a real scalar, and v is a real vector with */
 | |
| /* >  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
 | |
| /* >  A(i+k+1:n,i), and tau in TAU(i). */
 | |
| /* > */
 | |
| /* >  The elements of the vectors v together form the (n-k+1)-by-nb matrix */
 | |
| /* >  V which is needed, with T and Y, to apply the transformation to the */
 | |
| /* >  unreduced part of the matrix, using an update of the form: */
 | |
| /* >  A := (I - V*T*V**T) * (A - Y*V**T). */
 | |
| /* > */
 | |
| /* >  The contents of A on exit are illustrated by the following example */
 | |
| /* >  with n = 7, k = 3 and nb = 2: */
 | |
| /* > */
 | |
| /* >     ( a   a   a   a   a ) */
 | |
| /* >     ( a   a   a   a   a ) */
 | |
| /* >     ( a   a   a   a   a ) */
 | |
| /* >     ( h   h   a   a   a ) */
 | |
| /* >     ( v1  h   a   a   a ) */
 | |
| /* >     ( v1  v2  a   a   a ) */
 | |
| /* >     ( v1  v2  a   a   a ) */
 | |
| /* > */
 | |
| /* >  where a denotes an element of the original matrix A, h denotes a */
 | |
| /* >  modified element of the upper Hessenberg matrix H, and vi denotes an */
 | |
| /* >  element of the vector defining H(i). */
 | |
| /* > */
 | |
| /* >  This subroutine is a slight modification of LAPACK-3.0's DLAHRD */
 | |
| /* >  incorporating improvements proposed by Quintana-Orti and Van de */
 | |
| /* >  Gejin. Note that the entries of A(1:K,2:NB) differ from those */
 | |
| /* >  returned by the original LAPACK-3.0's DLAHRD routine. (This */
 | |
| /* >  subroutine is not backward compatible with LAPACK-3.0's DLAHRD.) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* >  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the */
 | |
| /* >  performance of reduction to Hessenberg form," ACM Transactions on */
 | |
| /* >  Mathematical Software, 32(2):180-194, June 2006. */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlahr2_(integer *n, integer *k, integer *nb, doublereal *
 | |
| 	a, integer *lda, doublereal *tau, doublereal *t, integer *ldt, 
 | |
| 	doublereal *y, integer *ldy)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, 
 | |
| 	    i__3;
 | |
|     doublereal d__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
 | |
| 	    , doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *), dgemv_(
 | |
| 	    char *, integer *, integer *, doublereal *, doublereal *, integer 
 | |
| 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *,
 | |
| 	     integer *), dtrmm_(char *, char *, char *, char *, integer *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *), daxpy_(integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
 | |
| 	    dtrmv_(char *, char *, char *, integer *, doublereal *, integer *,
 | |
| 	     doublereal *, integer *);
 | |
|     doublereal ei;
 | |
|     extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *), dlacpy_(char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --tau;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     y_dim1 = *ldy;
 | |
|     y_offset = 1 + y_dim1 * 1;
 | |
|     y -= y_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (*n <= 1) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     i__1 = *nb;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if (i__ > 1) {
 | |
| 
 | |
| /*           Update A(K+1:N,I) */
 | |
| 
 | |
| /*           Update I-th column of A - Y * V**T */
 | |
| 
 | |
| 	    i__2 = *n - *k;
 | |
| 	    i__3 = i__ - 1;
 | |
| 	    dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], 
 | |
| 		    ldy, &a[*k + i__ - 1 + a_dim1], lda, &c_b5, &a[*k + 1 + 
 | |
| 		    i__ * a_dim1], &c__1);
 | |
| 
 | |
| /*           Apply I - V * T**T * V**T to this column (call it b) from the */
 | |
| /*           left, using the last column of T as workspace */
 | |
| 
 | |
| /*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows) */
 | |
| /*                    ( V2 )             ( b2 ) */
 | |
| 
 | |
| /*           where V1 is unit lower triangular */
 | |
| 
 | |
| /*           w := V1**T * b1 */
 | |
| 
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + 
 | |
| 		    1], &c__1);
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    dtrmv_("Lower", "Transpose", "UNIT", &i__2, &a[*k + 1 + a_dim1], 
 | |
| 		    lda, &t[*nb * t_dim1 + 1], &c__1);
 | |
| 
 | |
| /*           w := w + V2**T * b2 */
 | |
| 
 | |
| 	    i__2 = *n - *k - i__ + 1;
 | |
| 	    i__3 = i__ - 1;
 | |
| 	    dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], 
 | |
| 		    lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb * 
 | |
| 		    t_dim1 + 1], &c__1);
 | |
| 
 | |
| /*           w := T**T * w */
 | |
| 
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    dtrmv_("Upper", "Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt,
 | |
| 		     &t[*nb * t_dim1 + 1], &c__1);
 | |
| 
 | |
| /*           b2 := b2 - V2*w */
 | |
| 
 | |
| 	    i__2 = *n - *k - i__ + 1;
 | |
| 	    i__3 = i__ - 1;
 | |
| 	    dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
 | |
| 		     lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ + 
 | |
| 		    i__ * a_dim1], &c__1);
 | |
| 
 | |
| /*           b1 := b1 - V1*w */
 | |
| 
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    dtrmv_("Lower", "NO TRANSPOSE", "UNIT", &i__2, &a[*k + 1 + a_dim1]
 | |
| 		    , lda, &t[*nb * t_dim1 + 1], &c__1);
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ 
 | |
| 		    * a_dim1], &c__1);
 | |
| 
 | |
| 	    a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
 | |
| 	}
 | |
| 
 | |
| /*        Generate the elementary reflector H(I) to annihilate */
 | |
| /*        A(K+I+1:N,I) */
 | |
| 
 | |
| 	i__2 = *n - *k - i__ + 1;
 | |
| /* Computing MIN */
 | |
| 	i__3 = *k + i__ + 1;
 | |
| 	dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ * 
 | |
| 		a_dim1], &c__1, &tau[i__]);
 | |
| 	ei = a[*k + i__ + i__ * a_dim1];
 | |
| 	a[*k + i__ + i__ * a_dim1] = 1.;
 | |
| 
 | |
| /*        Compute  Y(K+1:N,I) */
 | |
| 
 | |
| 	i__2 = *n - *k;
 | |
| 	i__3 = *n - *k - i__ + 1;
 | |
| 	dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b5, &a[*k + 1 + (i__ + 1) * 
 | |
| 		a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[*
 | |
| 		k + 1 + i__ * y_dim1], &c__1);
 | |
| 	i__2 = *n - *k - i__ + 1;
 | |
| 	i__3 = i__ - 1;
 | |
| 	dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
 | |
| 		a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 + 
 | |
| 		1], &c__1);
 | |
| 	i__2 = *n - *k;
 | |
| 	i__3 = i__ - 1;
 | |
| 	dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], ldy, 
 | |
| 		&t[i__ * t_dim1 + 1], &c__1, &c_b5, &y[*k + 1 + i__ * y_dim1],
 | |
| 		 &c__1);
 | |
| 	i__2 = *n - *k;
 | |
| 	dscal_(&i__2, &tau[i__], &y[*k + 1 + i__ * y_dim1], &c__1);
 | |
| 
 | |
| /*        Compute T(1:I,I) */
 | |
| 
 | |
| 	i__2 = i__ - 1;
 | |
| 	d__1 = -tau[i__];
 | |
| 	dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
 | |
| 	i__2 = i__ - 1;
 | |
| 	dtrmv_("Upper", "No Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, 
 | |
| 		&t[i__ * t_dim1 + 1], &c__1)
 | |
| 		;
 | |
| 	t[i__ + i__ * t_dim1] = tau[i__];
 | |
| 
 | |
| /* L10: */
 | |
|     }
 | |
|     a[*k + *nb + *nb * a_dim1] = ei;
 | |
| 
 | |
| /*     Compute Y(1:K,1:NB) */
 | |
| 
 | |
|     dlacpy_("ALL", k, nb, &a[(a_dim1 << 1) + 1], lda, &y[y_offset], ldy);
 | |
|     dtrmm_("RIGHT", "Lower", "NO TRANSPOSE", "UNIT", k, nb, &c_b5, &a[*k + 1 
 | |
| 	    + a_dim1], lda, &y[y_offset], ldy);
 | |
|     if (*n > *k + *nb) {
 | |
| 	i__1 = *n - *k - *nb;
 | |
| 	dgemm_("NO TRANSPOSE", "NO TRANSPOSE", k, nb, &i__1, &c_b5, &a[(*nb + 
 | |
| 		2) * a_dim1 + 1], lda, &a[*k + 1 + *nb + a_dim1], lda, &c_b5, 
 | |
| 		&y[y_offset], ldy);
 | |
|     }
 | |
|     dtrmm_("RIGHT", "Upper", "NO TRANSPOSE", "NON-UNIT", k, nb, &c_b5, &t[
 | |
| 	    t_offset], ldt, &y[y_offset], ldy);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DLAHR2 */
 | |
| 
 | |
| } /* dlahr2_ */
 | |
| 
 |