1215 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1215 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using th
 | |
| e double-shift/single-shift QR algorithm. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLAHQR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
 | |
| /*                          ILOZ, IHIZ, Z, LDZ, INFO ) */
 | |
| 
 | |
| /*       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N */
 | |
| /*       LOGICAL            WANTT, WANTZ */
 | |
| /*       DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    DLAHQR is an auxiliary routine called by DHSEQR to update the */
 | |
| /* >    eigenvalues and Schur decomposition already computed by DHSEQR, by */
 | |
| /* >    dealing with the Hessenberg submatrix in rows and columns ILO to */
 | |
| /* >    IHI. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] WANTT */
 | |
| /* > \verbatim */
 | |
| /* >          WANTT is LOGICAL */
 | |
| /* >          = .TRUE. : the full Schur form T is required; */
 | |
| /* >          = .FALSE.: only eigenvalues are required. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTZ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTZ is LOGICAL */
 | |
| /* >          = .TRUE. : the matrix of Schur vectors Z is required; */
 | |
| /* >          = .FALSE.: Schur vectors are not required. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix H.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >          It is assumed that H is already upper quasi-triangular in */
 | |
| /* >          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless */
 | |
| /* >          ILO = 1). DLAHQR works primarily with the Hessenberg */
 | |
| /* >          submatrix in rows and columns ILO to IHI, but applies */
 | |
| /* >          transformations to all of H if WANTT is .TRUE.. */
 | |
| /* >          1 <= ILO <= f2cmax(1,IHI); IHI <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is DOUBLE PRECISION array, dimension (LDH,N) */
 | |
| /* >          On entry, the upper Hessenberg matrix H. */
 | |
| /* >          On exit, if INFO is zero and if WANTT is .TRUE., H is upper */
 | |
| /* >          quasi-triangular in rows and columns ILO:IHI, with any */
 | |
| /* >          2-by-2 diagonal blocks in standard form. If INFO is zero */
 | |
| /* >          and WANTT is .FALSE., the contents of H are unspecified on */
 | |
| /* >          exit.  The output state of H if INFO is nonzero is given */
 | |
| /* >          below under the description of INFO. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          The leading dimension of the array H. LDH >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WR */
 | |
| /* > \verbatim */
 | |
| /* >          WR is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WI */
 | |
| /* > \verbatim */
 | |
| /* >          WI is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The real and imaginary parts, respectively, of the computed */
 | |
| /* >          eigenvalues ILO to IHI are stored in the corresponding */
 | |
| /* >          elements of WR and WI. If two eigenvalues are computed as a */
 | |
| /* >          complex conjugate pair, they are stored in consecutive */
 | |
| /* >          elements of WR and WI, say the i-th and (i+1)th, with */
 | |
| /* >          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the */
 | |
| /* >          eigenvalues are stored in the same order as on the diagonal */
 | |
| /* >          of the Schur form returned in H, with WR(i) = H(i,i), and, if */
 | |
| /* >          H(i:i+1,i:i+1) is a 2-by-2 diagonal block, */
 | |
| /* >          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILOZ */
 | |
| /* > \verbatim */
 | |
| /* >          ILOZ is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHIZ */
 | |
| /* > \verbatim */
 | |
| /* >          IHIZ is INTEGER */
 | |
| /* >          Specify the rows of Z to which transformations must be */
 | |
| /* >          applied if WANTZ is .TRUE.. */
 | |
| /* >          1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension (LDZ,N) */
 | |
| /* >          If WANTZ is .TRUE., on entry Z must contain the current */
 | |
| /* >          matrix Z of transformations accumulated by DHSEQR, and on */
 | |
| /* >          exit Z has been updated; transformations are applied only to */
 | |
| /* >          the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
 | |
| /* >          If WANTZ is .FALSE., Z is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           = 0:  successful exit */
 | |
| /* >           > 0:  If INFO = i, DLAHQR failed to compute all the */
 | |
| /* >                  eigenvalues ILO to IHI in a total of 30 iterations */
 | |
| /* >                  per eigenvalue; elements i+1:ihi of WR and WI */
 | |
| /* >                  contain those eigenvalues which have been */
 | |
| /* >                  successfully computed. */
 | |
| /* > */
 | |
| /* >                  If INFO > 0 and WANTT is .FALSE., then on exit, */
 | |
| /* >                  the remaining unconverged eigenvalues are the */
 | |
| /* >                  eigenvalues of the upper Hessenberg matrix rows */
 | |
| /* >                  and columns ILO through INFO of the final, output */
 | |
| /* >                  value of H. */
 | |
| /* > */
 | |
| /* >                  If INFO > 0 and WANTT is .TRUE., then on exit */
 | |
| /* >          (*)       (initial value of H)*U  = U*(final value of H) */
 | |
| /* >                  where U is an orthogonal matrix.    The final */
 | |
| /* >                  value of H is upper Hessenberg and triangular in */
 | |
| /* >                  rows and columns INFO+1 through IHI. */
 | |
| /* > */
 | |
| /* >                  If INFO > 0 and WANTZ is .TRUE., then on exit */
 | |
| /* >                      (final value of Z)  = (initial value of Z)*U */
 | |
| /* >                  where U is the orthogonal matrix in (*) */
 | |
| /* >                  (regardless of the value of WANTT.) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >     02-96 Based on modifications by */
 | |
| /* >     David Day, Sandia National Laboratory, USA */
 | |
| /* > */
 | |
| /* >     12-04 Further modifications by */
 | |
| /* >     Ralph Byers, University of Kansas, USA */
 | |
| /* >     This is a modified version of DLAHQR from LAPACK version 3.0. */
 | |
| /* >     It is (1) more robust against overflow and underflow and */
 | |
| /* >     (2) adopts the more conservative Ahues & Tisseur stopping */
 | |
| /* >     criterion (LAWN 122, 1997). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlahqr_(logical *wantt, logical *wantz, integer *n, 
 | |
| 	integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal 
 | |
| 	*wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__, 
 | |
| 	integer *ldz, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
 | |
|     doublereal d__1, d__2, d__3, d__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     extern /* Subroutine */ void drot_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *);
 | |
|     integer i__, j, k, l, m;
 | |
|     doublereal s, v[3];
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer itmax, i1, i2;
 | |
|     doublereal t1, t2, t3, v2, v3;
 | |
|     extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *);
 | |
|     doublereal aa, ab, ba, bb;
 | |
|     extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
 | |
|     doublereal h11, h12, h21, h22, cs;
 | |
|     integer nh;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *);
 | |
|     doublereal sn;
 | |
|     integer nr;
 | |
|     doublereal tr;
 | |
|     integer nz;
 | |
|     doublereal safmin, safmax, rtdisc, smlnum, det, h21s;
 | |
|     integer its;
 | |
|     doublereal ulp, sum, tst, rt1i, rt2i, rt1r, rt2r;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ========================================================= */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     --wr;
 | |
|     --wi;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
|     if (*ilo == *ihi) {
 | |
| 	wr[*ilo] = h__[*ilo + *ilo * h_dim1];
 | |
| 	wi[*ilo] = 0.;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== clear out the trash ==== */
 | |
|     i__1 = *ihi - 3;
 | |
|     for (j = *ilo; j <= i__1; ++j) {
 | |
| 	h__[j + 2 + j * h_dim1] = 0.;
 | |
| 	h__[j + 3 + j * h_dim1] = 0.;
 | |
| /* L10: */
 | |
|     }
 | |
|     if (*ilo <= *ihi - 2) {
 | |
| 	h__[*ihi + (*ihi - 2) * h_dim1] = 0.;
 | |
|     }
 | |
| 
 | |
|     nh = *ihi - *ilo + 1;
 | |
|     nz = *ihiz - *iloz + 1;
 | |
| 
 | |
| /*     Set machine-dependent constants for the stopping criterion. */
 | |
| 
 | |
|     safmin = dlamch_("SAFE MINIMUM");
 | |
|     safmax = 1. / safmin;
 | |
|     dlabad_(&safmin, &safmax);
 | |
|     ulp = dlamch_("PRECISION");
 | |
|     smlnum = safmin * ((doublereal) nh / ulp);
 | |
| 
 | |
| /*     I1 and I2 are the indices of the first row and last column of H */
 | |
| /*     to which transformations must be applied. If eigenvalues only are */
 | |
| /*     being computed, I1 and I2 are set inside the main loop. */
 | |
| 
 | |
|     if (*wantt) {
 | |
| 	i1 = 1;
 | |
| 	i2 = *n;
 | |
|     }
 | |
| 
 | |
| /*     ITMAX is the total number of QR iterations allowed. */
 | |
| 
 | |
|     itmax = f2cmax(10,nh) * 30;
 | |
| 
 | |
| /*     The main loop begins here. I is the loop index and decreases from */
 | |
| /*     IHI to ILO in steps of 1 or 2. Each iteration of the loop works */
 | |
| /*     with the active submatrix in rows and columns L to I. */
 | |
| /*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or */
 | |
| /*     H(L,L-1) is negligible so that the matrix splits. */
 | |
| 
 | |
|     i__ = *ihi;
 | |
| L20:
 | |
|     l = *ilo;
 | |
|     if (i__ < *ilo) {
 | |
| 	goto L160;
 | |
|     }
 | |
| 
 | |
| /*     Perform QR iterations on rows and columns ILO to I until a */
 | |
| /*     submatrix of order 1 or 2 splits off at the bottom because a */
 | |
| /*     subdiagonal element has become negligible. */
 | |
| 
 | |
|     i__1 = itmax;
 | |
|     for (its = 0; its <= i__1; ++its) {
 | |
| 
 | |
| /*        Look for a single small subdiagonal element. */
 | |
| 
 | |
| 	i__2 = l + 1;
 | |
| 	for (k = i__; k >= i__2; --k) {
 | |
| 	    if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= smlnum) {
 | |
| 		goto L40;
 | |
| 	    }
 | |
| 	    tst = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 = 
 | |
| 		    h__[k + k * h_dim1], abs(d__2));
 | |
| 	    if (tst == 0.) {
 | |
| 		if (k - 2 >= *ilo) {
 | |
| 		    tst += (d__1 = h__[k - 1 + (k - 2) * h_dim1], abs(d__1));
 | |
| 		}
 | |
| 		if (k + 1 <= *ihi) {
 | |
| 		    tst += (d__1 = h__[k + 1 + k * h_dim1], abs(d__1));
 | |
| 		}
 | |
| 	    }
 | |
| /*           ==== The following is a conservative small subdiagonal */
 | |
| /*           .    deflation  criterion due to Ahues & Tisseur (LAWN 122, */
 | |
| /*           .    1997). It has better mathematical foundation and */
 | |
| /*           .    improves accuracy in some cases.  ==== */
 | |
| 	    if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= ulp * tst) {
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
 | |
| 			d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
 | |
| 		ab = f2cmax(d__3,d__4);
 | |
| /* Computing MIN */
 | |
| 		d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
 | |
| 			d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
 | |
| 		ba = f2cmin(d__3,d__4);
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
 | |
| 			 h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1], 
 | |
| 			abs(d__2));
 | |
| 		aa = f2cmax(d__3,d__4);
 | |
| /* Computing MIN */
 | |
| 		d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
 | |
| 			 h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1], 
 | |
| 			abs(d__2));
 | |
| 		bb = f2cmin(d__3,d__4);
 | |
| 		s = aa + ab;
 | |
| /* Computing MAX */
 | |
| 		d__1 = smlnum, d__2 = ulp * (bb * (aa / s));
 | |
| 		if (ba * (ab / s) <= f2cmax(d__1,d__2)) {
 | |
| 		    goto L40;
 | |
| 		}
 | |
| 	    }
 | |
| /* L30: */
 | |
| 	}
 | |
| L40:
 | |
| 	l = k;
 | |
| 	if (l > *ilo) {
 | |
| 
 | |
| /*           H(L,L-1) is negligible */
 | |
| 
 | |
| 	    h__[l + (l - 1) * h_dim1] = 0.;
 | |
| 	}
 | |
| 
 | |
| /*        Exit from loop if a submatrix of order 1 or 2 has split off. */
 | |
| 
 | |
| 	if (l >= i__ - 1) {
 | |
| 	    goto L150;
 | |
| 	}
 | |
| 
 | |
| /*        Now the active submatrix is in rows and columns L to I. If */
 | |
| /*        eigenvalues only are being computed, only the active submatrix */
 | |
| /*        need be transformed. */
 | |
| 
 | |
| 	if (! (*wantt)) {
 | |
| 	    i1 = l;
 | |
| 	    i2 = i__;
 | |
| 	}
 | |
| 
 | |
| 	if (its == 10) {
 | |
| 
 | |
| /*           Exceptional shift. */
 | |
| 
 | |
| 	    s = (d__1 = h__[l + 1 + l * h_dim1], abs(d__1)) + (d__2 = h__[l + 
 | |
| 		    2 + (l + 1) * h_dim1], abs(d__2));
 | |
| 	    h11 = s * .75 + h__[l + l * h_dim1];
 | |
| 	    h12 = s * -.4375;
 | |
| 	    h21 = s;
 | |
| 	    h22 = h11;
 | |
| 	} else if (its == 20) {
 | |
| 
 | |
| /*           Exceptional shift. */
 | |
| 
 | |
| 	    s = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 = 
 | |
| 		    h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2));
 | |
| 	    h11 = s * .75 + h__[i__ + i__ * h_dim1];
 | |
| 	    h12 = s * -.4375;
 | |
| 	    h21 = s;
 | |
| 	    h22 = h11;
 | |
| 	} else {
 | |
| 
 | |
| /*           Prepare to use Francis' double shift */
 | |
| /*           (i.e. 2nd degree generalized Rayleigh quotient) */
 | |
| 
 | |
| 	    h11 = h__[i__ - 1 + (i__ - 1) * h_dim1];
 | |
| 	    h21 = h__[i__ + (i__ - 1) * h_dim1];
 | |
| 	    h12 = h__[i__ - 1 + i__ * h_dim1];
 | |
| 	    h22 = h__[i__ + i__ * h_dim1];
 | |
| 	}
 | |
| 	s = abs(h11) + abs(h12) + abs(h21) + abs(h22);
 | |
| 	if (s == 0.) {
 | |
| 	    rt1r = 0.;
 | |
| 	    rt1i = 0.;
 | |
| 	    rt2r = 0.;
 | |
| 	    rt2i = 0.;
 | |
| 	} else {
 | |
| 	    h11 /= s;
 | |
| 	    h21 /= s;
 | |
| 	    h12 /= s;
 | |
| 	    h22 /= s;
 | |
| 	    tr = (h11 + h22) / 2.;
 | |
| 	    det = (h11 - tr) * (h22 - tr) - h12 * h21;
 | |
| 	    rtdisc = sqrt((abs(det)));
 | |
| 	    if (det >= 0.) {
 | |
| 
 | |
| /*              ==== complex conjugate shifts ==== */
 | |
| 
 | |
| 		rt1r = tr * s;
 | |
| 		rt2r = rt1r;
 | |
| 		rt1i = rtdisc * s;
 | |
| 		rt2i = -rt1i;
 | |
| 	    } else {
 | |
| 
 | |
| /*              ==== real shifts (use only one of them)  ==== */
 | |
| 
 | |
| 		rt1r = tr + rtdisc;
 | |
| 		rt2r = tr - rtdisc;
 | |
| 		if ((d__1 = rt1r - h22, abs(d__1)) <= (d__2 = rt2r - h22, abs(
 | |
| 			d__2))) {
 | |
| 		    rt1r *= s;
 | |
| 		    rt2r = rt1r;
 | |
| 		} else {
 | |
| 		    rt2r *= s;
 | |
| 		    rt1r = rt2r;
 | |
| 		}
 | |
| 		rt1i = 0.;
 | |
| 		rt2i = 0.;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Look for two consecutive small subdiagonal elements. */
 | |
| 
 | |
| 	i__2 = l;
 | |
| 	for (m = i__ - 2; m >= i__2; --m) {
 | |
| /*           Determine the effect of starting the double-shift QR */
 | |
| /*           iteration at row M, and see if this would make H(M,M-1) */
 | |
| /*           negligible.  (The following uses scaling to avoid */
 | |
| /*           overflows and most underflows.) */
 | |
| 
 | |
| 	    h21s = h__[m + 1 + m * h_dim1];
 | |
| 	    s = (d__1 = h__[m + m * h_dim1] - rt2r, abs(d__1)) + abs(rt2i) + 
 | |
| 		    abs(h21s);
 | |
| 	    h21s = h__[m + 1 + m * h_dim1] / s;
 | |
| 	    v[0] = h21s * h__[m + (m + 1) * h_dim1] + (h__[m + m * h_dim1] - 
 | |
| 		    rt1r) * ((h__[m + m * h_dim1] - rt2r) / s) - rt1i * (rt2i 
 | |
| 		    / s);
 | |
| 	    v[1] = h21s * (h__[m + m * h_dim1] + h__[m + 1 + (m + 1) * h_dim1]
 | |
| 		     - rt1r - rt2r);
 | |
| 	    v[2] = h21s * h__[m + 2 + (m + 1) * h_dim1];
 | |
| 	    s = abs(v[0]) + abs(v[1]) + abs(v[2]);
 | |
| 	    v[0] /= s;
 | |
| 	    v[1] /= s;
 | |
| 	    v[2] /= s;
 | |
| 	    if (m == l) {
 | |
| 		goto L60;
 | |
| 	    }
 | |
| 	    if ((d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(v[1]) + 
 | |
| 		    abs(v[2])) <= ulp * abs(v[0]) * ((d__2 = h__[m - 1 + (m - 
 | |
| 		    1) * h_dim1], abs(d__2)) + (d__3 = h__[m + m * h_dim1], 
 | |
| 		    abs(d__3)) + (d__4 = h__[m + 1 + (m + 1) * h_dim1], abs(
 | |
| 		    d__4)))) {
 | |
| 		goto L60;
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
| L60:
 | |
| 
 | |
| /*        Double-shift QR step */
 | |
| 
 | |
| 	i__2 = i__ - 1;
 | |
| 	for (k = m; k <= i__2; ++k) {
 | |
| 
 | |
| /*           The first iteration of this loop determines a reflection G */
 | |
| /*           from the vector V and applies it from left and right to H, */
 | |
| /*           thus creating a nonzero bulge below the subdiagonal. */
 | |
| 
 | |
| /*           Each subsequent iteration determines a reflection G to */
 | |
| /*           restore the Hessenberg form in the (K-1)th column, and thus */
 | |
| /*           chases the bulge one step toward the bottom of the active */
 | |
| /*           submatrix. NR is the order of G. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__3 = 3, i__4 = i__ - k + 1;
 | |
| 	    nr = f2cmin(i__3,i__4);
 | |
| 	    if (k > m) {
 | |
| 		dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
 | |
| 	    }
 | |
| 	    dlarfg_(&nr, v, &v[1], &c__1, &t1);
 | |
| 	    if (k > m) {
 | |
| 		h__[k + (k - 1) * h_dim1] = v[0];
 | |
| 		h__[k + 1 + (k - 1) * h_dim1] = 0.;
 | |
| 		if (k < i__ - 1) {
 | |
| 		    h__[k + 2 + (k - 1) * h_dim1] = 0.;
 | |
| 		}
 | |
| 	    } else if (m > l) {
 | |
| /*               ==== Use the following instead of */
 | |
| /*               .    H( K, K-1 ) = -H( K, K-1 ) to */
 | |
| /*               .    avoid a bug when v(2) and v(3) */
 | |
| /*               .    underflow. ==== */
 | |
| 		h__[k + (k - 1) * h_dim1] *= 1. - t1;
 | |
| 	    }
 | |
| 	    v2 = v[1];
 | |
| 	    t2 = t1 * v2;
 | |
| 	    if (nr == 3) {
 | |
| 		v3 = v[2];
 | |
| 		t3 = t1 * v3;
 | |
| 
 | |
| /*              Apply G from the left to transform the rows of the matrix */
 | |
| /*              in columns K to I2. */
 | |
| 
 | |
| 		i__3 = i2;
 | |
| 		for (j = k; j <= i__3; ++j) {
 | |
| 		    sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1] 
 | |
| 			    + v3 * h__[k + 2 + j * h_dim1];
 | |
| 		    h__[k + j * h_dim1] -= sum * t1;
 | |
| 		    h__[k + 1 + j * h_dim1] -= sum * t2;
 | |
| 		    h__[k + 2 + j * h_dim1] -= sum * t3;
 | |
| /* L70: */
 | |
| 		}
 | |
| 
 | |
| /*              Apply G from the right to transform the columns of the */
 | |
| /*              matrix in rows I1 to f2cmin(K+3,I). */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = k + 3;
 | |
| 		i__3 = f2cmin(i__4,i__);
 | |
| 		for (j = i1; j <= i__3; ++j) {
 | |
| 		    sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
 | |
| 			     + v3 * h__[j + (k + 2) * h_dim1];
 | |
| 		    h__[j + k * h_dim1] -= sum * t1;
 | |
| 		    h__[j + (k + 1) * h_dim1] -= sum * t2;
 | |
| 		    h__[j + (k + 2) * h_dim1] -= sum * t3;
 | |
| /* L80: */
 | |
| 		}
 | |
| 
 | |
| 		if (*wantz) {
 | |
| 
 | |
| /*                 Accumulate transformations in the matrix Z */
 | |
| 
 | |
| 		    i__3 = *ihiz;
 | |
| 		    for (j = *iloz; j <= i__3; ++j) {
 | |
| 			sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) * 
 | |
| 				z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
 | |
| 			z__[j + k * z_dim1] -= sum * t1;
 | |
| 			z__[j + (k + 1) * z_dim1] -= sum * t2;
 | |
| 			z__[j + (k + 2) * z_dim1] -= sum * t3;
 | |
| /* L90: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else if (nr == 2) {
 | |
| 
 | |
| /*              Apply G from the left to transform the rows of the matrix */
 | |
| /*              in columns K to I2. */
 | |
| 
 | |
| 		i__3 = i2;
 | |
| 		for (j = k; j <= i__3; ++j) {
 | |
| 		    sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
 | |
| 		    h__[k + j * h_dim1] -= sum * t1;
 | |
| 		    h__[k + 1 + j * h_dim1] -= sum * t2;
 | |
| /* L100: */
 | |
| 		}
 | |
| 
 | |
| /*              Apply G from the right to transform the columns of the */
 | |
| /*              matrix in rows I1 to f2cmin(K+3,I). */
 | |
| 
 | |
| 		i__3 = i__;
 | |
| 		for (j = i1; j <= i__3; ++j) {
 | |
| 		    sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
 | |
| 			    ;
 | |
| 		    h__[j + k * h_dim1] -= sum * t1;
 | |
| 		    h__[j + (k + 1) * h_dim1] -= sum * t2;
 | |
| /* L110: */
 | |
| 		}
 | |
| 
 | |
| 		if (*wantz) {
 | |
| 
 | |
| /*                 Accumulate transformations in the matrix Z */
 | |
| 
 | |
| 		    i__3 = *ihiz;
 | |
| 		    for (j = *iloz; j <= i__3; ++j) {
 | |
| 			sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) * 
 | |
| 				z_dim1];
 | |
| 			z__[j + k * z_dim1] -= sum * t1;
 | |
| 			z__[j + (k + 1) * z_dim1] -= sum * t2;
 | |
| /* L120: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| /* L130: */
 | |
| 	}
 | |
| 
 | |
| /* L140: */
 | |
|     }
 | |
| 
 | |
| /*     Failure to converge in remaining number of iterations */
 | |
| 
 | |
|     *info = i__;
 | |
|     return;
 | |
| 
 | |
| L150:
 | |
| 
 | |
|     if (l == i__) {
 | |
| 
 | |
| /*        H(I,I-1) is negligible: one eigenvalue has converged. */
 | |
| 
 | |
| 	wr[i__] = h__[i__ + i__ * h_dim1];
 | |
| 	wi[i__] = 0.;
 | |
|     } else if (l == i__ - 1) {
 | |
| 
 | |
| /*        H(I-1,I-2) is negligible: a pair of eigenvalues have converged. */
 | |
| 
 | |
| /*        Transform the 2-by-2 submatrix to standard Schur form, */
 | |
| /*        and compute and store the eigenvalues. */
 | |
| 
 | |
| 	dlanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ * 
 | |
| 		h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ * 
 | |
| 		h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs, 
 | |
| 		&sn);
 | |
| 
 | |
| 	if (*wantt) {
 | |
| 
 | |
| /*           Apply the transformation to the rest of H. */
 | |
| 
 | |
| 	    if (i2 > i__) {
 | |
| 		i__1 = i2 - i__;
 | |
| 		drot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
 | |
| 			i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
 | |
| 	    }
 | |
| 	    i__1 = i__ - i1 - 1;
 | |
| 	    drot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
 | |
| 		     h_dim1], &c__1, &cs, &sn);
 | |
| 	}
 | |
| 	if (*wantz) {
 | |
| 
 | |
| /*           Apply the transformation to Z. */
 | |
| 
 | |
| 	    drot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz + 
 | |
| 		    i__ * z_dim1], &c__1, &cs, &sn);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     return to start of the main loop with new value of I. */
 | |
| 
 | |
|     i__ = l - 1;
 | |
|     goto L20;
 | |
| 
 | |
| L160:
 | |
|     return;
 | |
| 
 | |
| /*     End of DLAHQR */
 | |
| 
 | |
| } /* dlahqr_ */
 | |
| 
 |