306 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			306 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAEDA used by DSTEDC. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAEDA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
 | |
| *                          GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
 | |
| *      $                   PRMPTR( * ), QPTR( * )
 | |
| *       DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAEDA computes the Z vector corresponding to the merge step in the
 | |
| *> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
 | |
| *> problem.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TLVLS
 | |
| *> \verbatim
 | |
| *>          TLVLS is INTEGER
 | |
| *>         The total number of merging levels in the overall divide and
 | |
| *>         conquer tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CURLVL
 | |
| *> \verbatim
 | |
| *>          CURLVL is INTEGER
 | |
| *>         The current level in the overall merge routine,
 | |
| *>         0 <= curlvl <= tlvls.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CURPBM
 | |
| *> \verbatim
 | |
| *>          CURPBM is INTEGER
 | |
| *>         The current problem in the current level in the overall
 | |
| *>         merge routine (counting from upper left to lower right).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PRMPTR
 | |
| *> \verbatim
 | |
| *>          PRMPTR is INTEGER array, dimension (N lg N)
 | |
| *>         Contains a list of pointers which indicate where in PERM a
 | |
| *>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
 | |
| *>         indicates the size of the permutation and incidentally the
 | |
| *>         size of the full, non-deflated problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PERM
 | |
| *> \verbatim
 | |
| *>          PERM is INTEGER array, dimension (N lg N)
 | |
| *>         Contains the permutations (from deflation and sorting) to be
 | |
| *>         applied to each eigenblock.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVPTR
 | |
| *> \verbatim
 | |
| *>          GIVPTR is INTEGER array, dimension (N lg N)
 | |
| *>         Contains a list of pointers which indicate where in GIVCOL a
 | |
| *>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
 | |
| *>         indicates the number of Givens rotations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVCOL
 | |
| *> \verbatim
 | |
| *>          GIVCOL is INTEGER array, dimension (2, N lg N)
 | |
| *>         Each pair of numbers indicates a pair of columns to take place
 | |
| *>         in a Givens rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] GIVNUM
 | |
| *> \verbatim
 | |
| *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
 | |
| *>         Each number indicates the S value to be used in the
 | |
| *>         corresponding Givens rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is DOUBLE PRECISION array, dimension (N**2)
 | |
| *>         Contains the square eigenblocks from previous levels, the
 | |
| *>         starting positions for blocks are given by QPTR.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] QPTR
 | |
| *> \verbatim
 | |
| *>          QPTR is INTEGER array, dimension (N+2)
 | |
| *>         Contains a list of pointers which indicate where in Q an
 | |
| *>         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates
 | |
| *>         the size of the block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (N)
 | |
| *>         On output this vector contains the updating vector (the last
 | |
| *>         row of the first sub-eigenvector matrix and the first row of
 | |
| *>         the second sub-eigenvector matrix).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ZTEMP
 | |
| *> \verbatim
 | |
| *>          ZTEMP is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
 | |
|      $                   GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
 | |
|      $                   PRMPTR( * ), QPTR( * )
 | |
|       DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, HALF, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
 | |
|      $                   PTR, ZPTR1
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEMV, DROT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, INT, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLAEDA', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine location of first number in second half.
 | |
| *
 | |
|       MID = N / 2 + 1
 | |
| *
 | |
| *     Gather last/first rows of appropriate eigenblocks into center of Z
 | |
| *
 | |
|       PTR = 1
 | |
| *
 | |
| *     Determine location of lowest level subproblem in the full storage
 | |
| *     scheme
 | |
| *
 | |
|       CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
 | |
| *
 | |
| *     Determine size of these matrices.  We add HALF to the value of
 | |
| *     the SQRT in case the machine underestimates one of these square
 | |
| *     roots.
 | |
| *
 | |
|       BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
 | |
|       BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
 | |
|       DO 10 K = 1, MID - BSIZ1 - 1
 | |
|          Z( K ) = ZERO
 | |
|    10 CONTINUE
 | |
|       CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
 | |
|      $            Z( MID-BSIZ1 ), 1 )
 | |
|       CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
 | |
|       DO 20 K = MID + BSIZ2, N
 | |
|          Z( K ) = ZERO
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Loop through remaining levels 1 -> CURLVL applying the Givens
 | |
| *     rotations and permutation and then multiplying the center matrices
 | |
| *     against the current Z.
 | |
| *
 | |
|       PTR = 2**TLVLS + 1
 | |
|       DO 70 K = 1, CURLVL - 1
 | |
|          CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
 | |
|          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
 | |
|          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
 | |
|          ZPTR1 = MID - PSIZ1
 | |
| *
 | |
| *       Apply Givens at CURR and CURR+1
 | |
| *
 | |
|          DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
 | |
|             CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
 | |
|      $                 Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
 | |
|      $                 GIVNUM( 2, I ) )
 | |
|    30    CONTINUE
 | |
|          DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
 | |
|             CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
 | |
|      $                 Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
 | |
|      $                 GIVNUM( 2, I ) )
 | |
|    40    CONTINUE
 | |
|          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
 | |
|          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
 | |
|          DO 50 I = 0, PSIZ1 - 1
 | |
|             ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
 | |
|    50    CONTINUE
 | |
|          DO 60 I = 0, PSIZ2 - 1
 | |
|             ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        Multiply Blocks at CURR and CURR+1
 | |
| *
 | |
| *        Determine size of these matrices.  We add HALF to the value of
 | |
| *        the SQRT in case the machine underestimates one of these
 | |
| *        square roots.
 | |
| *
 | |
|          BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
 | |
|          BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+
 | |
|      $           1 ) ) ) )
 | |
|          IF( BSIZ1.GT.0 ) THEN
 | |
|             CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
 | |
|      $                  BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
 | |
|          END IF
 | |
|          CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
 | |
|      $               1 )
 | |
|          IF( BSIZ2.GT.0 ) THEN
 | |
|             CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
 | |
|      $                  BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
 | |
|          END IF
 | |
|          CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
 | |
|      $               Z( MID+BSIZ2 ), 1 )
 | |
| *
 | |
|          PTR = PTR + 2**( TLVLS-K )
 | |
|    70 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAEDA
 | |
| *
 | |
|       END
 |