1504 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1504 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b DLAED4 used by sstedc. Finds a single root of the secular equation. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLAED4 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed4.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed4.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed4.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO ) */
 | |
| 
 | |
| /*       INTEGER            I, INFO, N */
 | |
| /*       DOUBLE PRECISION   DLAM, RHO */
 | |
| /*       DOUBLE PRECISION   D( * ), DELTA( * ), Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > This subroutine computes the I-th updated eigenvalue of a symmetric */
 | |
| /* > rank-one modification to a diagonal matrix whose elements are */
 | |
| /* > given in the array d, and that */
 | |
| /* > */
 | |
| /* >            D(i) < D(j)  for  i < j */
 | |
| /* > */
 | |
| /* > and that RHO > 0.  This is arranged by the calling routine, and is */
 | |
| /* > no loss in generality.  The rank-one modified system is thus */
 | |
| /* > */
 | |
| /* >            diag( D )  +  RHO * Z * Z_transpose. */
 | |
| /* > */
 | |
| /* > where we assume the Euclidean norm of Z is 1. */
 | |
| /* > */
 | |
| /* > The method consists of approximating the rational functions in the */
 | |
| /* > secular equation by simpler interpolating rational functions. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >         The length of all arrays. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] I */
 | |
| /* > \verbatim */
 | |
| /* >          I is INTEGER */
 | |
| /* >         The index of the eigenvalue to be computed.  1 <= I <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >         The original eigenvalues.  It is assumed that they are in */
 | |
| /* >         order, D(I) < D(J)  for I < J. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >         The components of the updating vector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DELTA */
 | |
| /* > \verbatim */
 | |
| /* >          DELTA is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >         If N > 2, DELTA contains (D(j) - lambda_I) in its  j-th */
 | |
| /* >         component.  If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5 */
 | |
| /* >         for detail. The vector DELTA contains the information necessary */
 | |
| /* >         to construct the eigenvectors by DLAED3 and DLAED9. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RHO */
 | |
| /* > \verbatim */
 | |
| /* >          RHO is DOUBLE PRECISION */
 | |
| /* >         The scalar in the symmetric updating formula. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DLAM */
 | |
| /* > \verbatim */
 | |
| /* >          DLAM is DOUBLE PRECISION */
 | |
| /* >         The computed lambda_I, the I-th updated eigenvalue. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >         = 0:  successful exit */
 | |
| /* >         > 0:  if INFO = 1, the updating process failed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Internal Parameters: */
 | |
| /*  ========================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
 | |
| /* >  whether D(i) or D(i+1) is treated as the origin. */
 | |
| /* > */
 | |
| /* >            ORGATI = .true.    origin at i */
 | |
| /* >            ORGATI = .false.   origin at i+1 */
 | |
| /* > */
 | |
| /* >   Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
 | |
| /* >   if we are working with THREE poles! */
 | |
| /* > */
 | |
| /* >   MAXIT is the maximum number of iterations allowed for each */
 | |
| /* >   eigenvalue. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ren-Cang Li, Computer Science Division, University of California */
 | |
| /* >     at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlaed4_(integer *n, integer *i__, doublereal *d__, 
 | |
| 	doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam,
 | |
| 	 integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     doublereal d__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal dphi, dpsi;
 | |
|     integer iter;
 | |
|     doublereal temp, prew, temp1, a, b, c__;
 | |
|     integer j;
 | |
|     doublereal w, dltlb, dltub, midpt;
 | |
|     integer niter;
 | |
|     logical swtch;
 | |
|     extern /* Subroutine */ void dlaed5_(integer *, doublereal *, doublereal *,
 | |
| 	     doublereal *, doublereal *, doublereal *), dlaed6_(integer *, 
 | |
| 	    logical *, doublereal *, doublereal *, doublereal *, doublereal *,
 | |
| 	     doublereal *, integer *);
 | |
|     logical swtch3;
 | |
|     integer ii;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal dw, zz[3];
 | |
|     logical orgati;
 | |
|     doublereal erretm, rhoinv;
 | |
|     integer ip1;
 | |
|     doublereal del, eta, phi, eps, tau, psi;
 | |
|     integer iim1, iip1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Since this routine is called in an inner loop, we do no argument */
 | |
| /*     checking. */
 | |
| 
 | |
| /*     Quick return for N=1 and 2. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --delta;
 | |
|     --z__;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     if (*n == 1) {
 | |
| 
 | |
| /*         Presumably, I=1 upon entry */
 | |
| 
 | |
| 	*dlam = d__[1] + *rho * z__[1] * z__[1];
 | |
| 	delta[1] = 1.;
 | |
| 	return;
 | |
|     }
 | |
|     if (*n == 2) {
 | |
| 	dlaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Compute machine epsilon */
 | |
| 
 | |
|     eps = dlamch_("Epsilon");
 | |
|     rhoinv = 1. / *rho;
 | |
| 
 | |
| /*     The case I = N */
 | |
| 
 | |
|     if (*i__ == *n) {
 | |
| 
 | |
| /*        Initialize some basic variables */
 | |
| 
 | |
| 	ii = *n - 1;
 | |
| 	niter = 1;
 | |
| 
 | |
| /*        Calculate initial guess */
 | |
| 
 | |
| 	midpt = *rho / 2.;
 | |
| 
 | |
| /*        If ||Z||_2 is not one, then TEMP should be set to */
 | |
| /*        RHO * ||Z||_2^2 / TWO */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] = d__[j] - d__[*i__] - midpt;
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| 	psi = 0.;
 | |
| 	i__1 = *n - 2;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    psi += z__[j] * z__[j] / delta[j];
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| 	c__ = rhoinv + psi;
 | |
| 	w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
 | |
| 		n];
 | |
| 
 | |
| 	if (w <= 0.) {
 | |
| 	    temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho) 
 | |
| 		    + z__[*n] * z__[*n] / *rho;
 | |
| 	    if (c__ <= temp) {
 | |
| 		tau = *rho;
 | |
| 	    } else {
 | |
| 		del = d__[*n] - d__[*n - 1];
 | |
| 		a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
 | |
| 			;
 | |
| 		b = z__[*n] * z__[*n] * del;
 | |
| 		if (a < 0.) {
 | |
| 		    tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 | |
| 		} else {
 | |
| 		    tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           It can be proved that */
 | |
| /*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */
 | |
| 
 | |
| 	    dltlb = midpt;
 | |
| 	    dltub = *rho;
 | |
| 	} else {
 | |
| 	    del = d__[*n] - d__[*n - 1];
 | |
| 	    a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
 | |
| 	    b = z__[*n] * z__[*n] * del;
 | |
| 	    if (a < 0.) {
 | |
| 		tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 | |
| 	    } else {
 | |
| 		tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 | |
| 	    }
 | |
| 
 | |
| /*           It can be proved that */
 | |
| /*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */
 | |
| 
 | |
| 	    dltlb = 0.;
 | |
| 	    dltub = midpt;
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] = d__[j] - d__[*i__] - tau;
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = ii;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / delta[j];
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L40: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	temp = z__[*n] / delta[*n];
 | |
| 	phi = z__[*n] * temp;
 | |
| 	dphi = temp * temp;
 | |
| 	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 | |
| 		+ dphi);
 | |
| 
 | |
| 	w = rhoinv + phi + psi;
 | |
| 
 | |
| /*        Test for convergence */
 | |
| 
 | |
| 	if (abs(w) <= eps * erretm) {
 | |
| 	    *dlam = d__[*i__] + tau;
 | |
| 	    goto L250;
 | |
| 	}
 | |
| 
 | |
| 	if (w <= 0.) {
 | |
| 	    dltlb = f2cmax(dltlb,tau);
 | |
| 	} else {
 | |
| 	    dltub = f2cmin(dltub,tau);
 | |
| 	}
 | |
| 
 | |
| /*        Calculate the new step */
 | |
| 
 | |
| 	++niter;
 | |
| 	c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
 | |
| 	a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
 | |
| 		dpsi + dphi);
 | |
| 	b = delta[*n - 1] * delta[*n] * w;
 | |
| 	if (c__ < 0.) {
 | |
| 	    c__ = abs(c__);
 | |
| 	}
 | |
| 	if (c__ == 0.) {
 | |
| /*          ETA = B/A */
 | |
| /*           ETA = RHO - TAU */
 | |
| 	    eta = dltub - tau;
 | |
| 	} else if (a >= 0.) {
 | |
| 	    eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 
 | |
| 		    * 2.);
 | |
| 	} else {
 | |
| 	    eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
 | |
| 		    );
 | |
| 	}
 | |
| 
 | |
| /*        Note, eta should be positive if w is negative, and */
 | |
| /*        eta should be negative otherwise. However, */
 | |
| /*        if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*        we simply use one Newton step instead. This way */
 | |
| /*        will guarantee eta*w < 0. */
 | |
| 
 | |
| 	if (w * eta > 0.) {
 | |
| 	    eta = -w / (dpsi + dphi);
 | |
| 	}
 | |
| 	temp = tau + eta;
 | |
| 	if (temp > dltub || temp < dltlb) {
 | |
| 	    if (w < 0.) {
 | |
| 		eta = (dltub - tau) / 2.;
 | |
| 	    } else {
 | |
| 		eta = (dltlb - tau) / 2.;
 | |
| 	    }
 | |
| 	}
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] -= eta;
 | |
| /* L50: */
 | |
| 	}
 | |
| 
 | |
| 	tau += eta;
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = ii;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / delta[j];
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L60: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	temp = z__[*n] / delta[*n];
 | |
| 	phi = z__[*n] * temp;
 | |
| 	dphi = temp * temp;
 | |
| 	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 | |
| 		+ dphi);
 | |
| 
 | |
| 	w = rhoinv + phi + psi;
 | |
| 
 | |
| /*        Main loop to update the values of the array   DELTA */
 | |
| 
 | |
| 	iter = niter + 1;
 | |
| 
 | |
| 	for (niter = iter; niter <= 30; ++niter) {
 | |
| 
 | |
| /*           Test for convergence */
 | |
| 
 | |
| 	    if (abs(w) <= eps * erretm) {
 | |
| 		*dlam = d__[*i__] + tau;
 | |
| 		goto L250;
 | |
| 	    }
 | |
| 
 | |
| 	    if (w <= 0.) {
 | |
| 		dltlb = f2cmax(dltlb,tau);
 | |
| 	    } else {
 | |
| 		dltub = f2cmin(dltub,tau);
 | |
| 	    }
 | |
| 
 | |
| /*           Calculate the new step */
 | |
| 
 | |
| 	    c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
 | |
| 	    a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * 
 | |
| 		    (dpsi + dphi);
 | |
| 	    b = delta[*n - 1] * delta[*n] * w;
 | |
| 	    if (a >= 0.) {
 | |
| 		eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | |
| 			c__ * 2.);
 | |
| 	    } else {
 | |
| 		eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    }
 | |
| 
 | |
| /*           Note, eta should be positive if w is negative, and */
 | |
| /*           eta should be negative otherwise. However, */
 | |
| /*           if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*           we simply use one Newton step instead. This way */
 | |
| /*           will guarantee eta*w < 0. */
 | |
| 
 | |
| 	    if (w * eta > 0.) {
 | |
| 		eta = -w / (dpsi + dphi);
 | |
| 	    }
 | |
| 	    temp = tau + eta;
 | |
| 	    if (temp > dltub || temp < dltlb) {
 | |
| 		if (w < 0.) {
 | |
| 		    eta = (dltub - tau) / 2.;
 | |
| 		} else {
 | |
| 		    eta = (dltlb - tau) / 2.;
 | |
| 		}
 | |
| 	    }
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		delta[j] -= eta;
 | |
| /* L70: */
 | |
| 	    }
 | |
| 
 | |
| 	    tau += eta;
 | |
| 
 | |
| /*           Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	    dpsi = 0.;
 | |
| 	    psi = 0.;
 | |
| 	    erretm = 0.;
 | |
| 	    i__1 = ii;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		temp = z__[j] / delta[j];
 | |
| 		psi += z__[j] * temp;
 | |
| 		dpsi += temp * temp;
 | |
| 		erretm += psi;
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	    erretm = abs(erretm);
 | |
| 
 | |
| /*           Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	    temp = z__[*n] / delta[*n];
 | |
| 	    phi = z__[*n] * temp;
 | |
| 	    dphi = temp * temp;
 | |
| 	    erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
 | |
| 		    dpsi + dphi);
 | |
| 
 | |
| 	    w = rhoinv + phi + psi;
 | |
| /* L90: */
 | |
| 	}
 | |
| 
 | |
| /*        Return with INFO = 1, NITER = MAXIT and not converged */
 | |
| 
 | |
| 	*info = 1;
 | |
| 	*dlam = d__[*i__] + tau;
 | |
| 	goto L250;
 | |
| 
 | |
| /*        End for the case I = N */
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        The case for I < N */
 | |
| 
 | |
| 	niter = 1;
 | |
| 	ip1 = *i__ + 1;
 | |
| 
 | |
| /*        Calculate initial guess */
 | |
| 
 | |
| 	del = d__[ip1] - d__[*i__];
 | |
| 	midpt = del / 2.;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] = d__[j] - d__[*i__] - midpt;
 | |
| /* L100: */
 | |
| 	}
 | |
| 
 | |
| 	psi = 0.;
 | |
| 	i__1 = *i__ - 1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    psi += z__[j] * z__[j] / delta[j];
 | |
| /* L110: */
 | |
| 	}
 | |
| 
 | |
| 	phi = 0.;
 | |
| 	i__1 = *i__ + 2;
 | |
| 	for (j = *n; j >= i__1; --j) {
 | |
| 	    phi += z__[j] * z__[j] / delta[j];
 | |
| /* L120: */
 | |
| 	}
 | |
| 	c__ = rhoinv + psi + phi;
 | |
| 	w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] / 
 | |
| 		delta[ip1];
 | |
| 
 | |
| 	if (w > 0.) {
 | |
| 
 | |
| /*           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */
 | |
| 
 | |
| /*           We choose d(i) as origin. */
 | |
| 
 | |
| 	    orgati = TRUE_;
 | |
| 	    a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
 | |
| 	    b = z__[*i__] * z__[*i__] * del;
 | |
| 	    if (a > 0.) {
 | |
| 		tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    } else {
 | |
| 		tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | |
| 			c__ * 2.);
 | |
| 	    }
 | |
| 	    dltlb = 0.;
 | |
| 	    dltub = midpt;
 | |
| 	} else {
 | |
| 
 | |
| /*           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */
 | |
| 
 | |
| /*           We choose d(i+1) as origin. */
 | |
| 
 | |
| 	    orgati = FALSE_;
 | |
| 	    a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
 | |
| 	    b = z__[ip1] * z__[ip1] * del;
 | |
| 	    if (a < 0.) {
 | |
| 		tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    } else {
 | |
| 		tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / 
 | |
| 			(c__ * 2.);
 | |
| 	    }
 | |
| 	    dltlb = -midpt;
 | |
| 	    dltub = 0.;
 | |
| 	}
 | |
| 
 | |
| 	if (orgati) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		delta[j] = d__[j] - d__[*i__] - tau;
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		delta[j] = d__[j] - d__[ip1] - tau;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	}
 | |
| 	if (orgati) {
 | |
| 	    ii = *i__;
 | |
| 	} else {
 | |
| 	    ii = *i__ + 1;
 | |
| 	}
 | |
| 	iim1 = ii - 1;
 | |
| 	iip1 = ii + 1;
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = iim1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / delta[j];
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L150: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	dphi = 0.;
 | |
| 	phi = 0.;
 | |
| 	i__1 = iip1;
 | |
| 	for (j = *n; j >= i__1; --j) {
 | |
| 	    temp = z__[j] / delta[j];
 | |
| 	    phi += z__[j] * temp;
 | |
| 	    dphi += temp * temp;
 | |
| 	    erretm += phi;
 | |
| /* L160: */
 | |
| 	}
 | |
| 
 | |
| 	w = rhoinv + phi + psi;
 | |
| 
 | |
| /*        W is the value of the secular function with */
 | |
| /*        its ii-th element removed. */
 | |
| 
 | |
| 	swtch3 = FALSE_;
 | |
| 	if (orgati) {
 | |
| 	    if (w < 0.) {
 | |
| 		swtch3 = TRUE_;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if (w > 0.) {
 | |
| 		swtch3 = TRUE_;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (ii == 1 || ii == *n) {
 | |
| 	    swtch3 = FALSE_;
 | |
| 	}
 | |
| 
 | |
| 	temp = z__[ii] / delta[ii];
 | |
| 	dw = dpsi + dphi + temp * temp;
 | |
| 	temp = z__[ii] * temp;
 | |
| 	w += temp;
 | |
| 	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 | |
| 		abs(tau) * dw;
 | |
| 
 | |
| /*        Test for convergence */
 | |
| 
 | |
| 	if (abs(w) <= eps * erretm) {
 | |
| 	    if (orgati) {
 | |
| 		*dlam = d__[*i__] + tau;
 | |
| 	    } else {
 | |
| 		*dlam = d__[ip1] + tau;
 | |
| 	    }
 | |
| 	    goto L250;
 | |
| 	}
 | |
| 
 | |
| 	if (w <= 0.) {
 | |
| 	    dltlb = f2cmax(dltlb,tau);
 | |
| 	} else {
 | |
| 	    dltub = f2cmin(dltub,tau);
 | |
| 	}
 | |
| 
 | |
| /*        Calculate the new step */
 | |
| 
 | |
| 	++niter;
 | |
| 	if (! swtch3) {
 | |
| 	    if (orgati) {
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = z__[*i__] / delta[*i__];
 | |
| 		c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 * 
 | |
| 			d__1);
 | |
| 	    } else {
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = z__[ip1] / delta[ip1];
 | |
| 		c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 * 
 | |
| 			d__1);
 | |
| 	    }
 | |
| 	    a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] * 
 | |
| 		    dw;
 | |
| 	    b = delta[*i__] * delta[ip1] * w;
 | |
| 	    if (c__ == 0.) {
 | |
| 		if (a == 0.) {
 | |
| 		    if (orgati) {
 | |
| 			a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] * 
 | |
| 				(dpsi + dphi);
 | |
| 		    } else {
 | |
| 			a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] * 
 | |
| 				(dpsi + dphi);
 | |
| 		    }
 | |
| 		}
 | |
| 		eta = b / a;
 | |
| 	    } else if (a <= 0.) {
 | |
| 		eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | |
| 			c__ * 2.);
 | |
| 	    } else {
 | |
| 		eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Interpolation using THREE most relevant poles */
 | |
| 
 | |
| 	    temp = rhoinv + psi + phi;
 | |
| 	    if (orgati) {
 | |
| 		temp1 = z__[iim1] / delta[iim1];
 | |
| 		temp1 *= temp1;
 | |
| 		c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
 | |
| 			iip1]) * temp1;
 | |
| 		zz[0] = z__[iim1] * z__[iim1];
 | |
| 		zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
 | |
| 	    } else {
 | |
| 		temp1 = z__[iip1] / delta[iip1];
 | |
| 		temp1 *= temp1;
 | |
| 		c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
 | |
| 			iim1]) * temp1;
 | |
| 		zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
 | |
| 		zz[2] = z__[iip1] * z__[iip1];
 | |
| 	    }
 | |
| 	    zz[1] = z__[ii] * z__[ii];
 | |
| 	    dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
 | |
| 	    if (*info != 0) {
 | |
| 		goto L250;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Note, eta should be positive if w is negative, and */
 | |
| /*        eta should be negative otherwise. However, */
 | |
| /*        if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*        we simply use one Newton step instead. This way */
 | |
| /*        will guarantee eta*w < 0. */
 | |
| 
 | |
| 	if (w * eta >= 0.) {
 | |
| 	    eta = -w / dw;
 | |
| 	}
 | |
| 	temp = tau + eta;
 | |
| 	if (temp > dltub || temp < dltlb) {
 | |
| 	    if (w < 0.) {
 | |
| 		eta = (dltub - tau) / 2.;
 | |
| 	    } else {
 | |
| 		eta = (dltlb - tau) / 2.;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	prew = w;
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] -= eta;
 | |
| /* L180: */
 | |
| 	}
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = iim1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / delta[j];
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L190: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	dphi = 0.;
 | |
| 	phi = 0.;
 | |
| 	i__1 = iip1;
 | |
| 	for (j = *n; j >= i__1; --j) {
 | |
| 	    temp = z__[j] / delta[j];
 | |
| 	    phi += z__[j] * temp;
 | |
| 	    dphi += temp * temp;
 | |
| 	    erretm += phi;
 | |
| /* L200: */
 | |
| 	}
 | |
| 
 | |
| 	temp = z__[ii] / delta[ii];
 | |
| 	dw = dpsi + dphi + temp * temp;
 | |
| 	temp = z__[ii] * temp;
 | |
| 	w = rhoinv + phi + psi + temp;
 | |
| 	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (
 | |
| 		d__1 = tau + eta, abs(d__1)) * dw;
 | |
| 
 | |
| 	swtch = FALSE_;
 | |
| 	if (orgati) {
 | |
| 	    if (-w > abs(prew) / 10.) {
 | |
| 		swtch = TRUE_;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if (w > abs(prew) / 10.) {
 | |
| 		swtch = TRUE_;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	tau += eta;
 | |
| 
 | |
| /*        Main loop to update the values of the array   DELTA */
 | |
| 
 | |
| 	iter = niter + 1;
 | |
| 
 | |
| 	for (niter = iter; niter <= 30; ++niter) {
 | |
| 
 | |
| /*           Test for convergence */
 | |
| 
 | |
| 	    if (abs(w) <= eps * erretm) {
 | |
| 		if (orgati) {
 | |
| 		    *dlam = d__[*i__] + tau;
 | |
| 		} else {
 | |
| 		    *dlam = d__[ip1] + tau;
 | |
| 		}
 | |
| 		goto L250;
 | |
| 	    }
 | |
| 
 | |
| 	    if (w <= 0.) {
 | |
| 		dltlb = f2cmax(dltlb,tau);
 | |
| 	    } else {
 | |
| 		dltub = f2cmin(dltub,tau);
 | |
| 	    }
 | |
| 
 | |
| /*           Calculate the new step */
 | |
| 
 | |
| 	    if (! swtch3) {
 | |
| 		if (! swtch) {
 | |
| 		    if (orgati) {
 | |
| /* Computing 2nd power */
 | |
| 			d__1 = z__[*i__] / delta[*i__];
 | |
| 			c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
 | |
| 				d__1 * d__1);
 | |
| 		    } else {
 | |
| /* Computing 2nd power */
 | |
| 			d__1 = z__[ip1] / delta[ip1];
 | |
| 			c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * 
 | |
| 				(d__1 * d__1);
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    temp = z__[ii] / delta[ii];
 | |
| 		    if (orgati) {
 | |
| 			dpsi += temp * temp;
 | |
| 		    } else {
 | |
| 			dphi += temp * temp;
 | |
| 		    }
 | |
| 		    c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
 | |
| 		}
 | |
| 		a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] 
 | |
| 			* dw;
 | |
| 		b = delta[*i__] * delta[ip1] * w;
 | |
| 		if (c__ == 0.) {
 | |
| 		    if (a == 0.) {
 | |
| 			if (! swtch) {
 | |
| 			    if (orgati) {
 | |
| 				a = z__[*i__] * z__[*i__] + delta[ip1] * 
 | |
| 					delta[ip1] * (dpsi + dphi);
 | |
| 			    } else {
 | |
| 				a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
 | |
| 					*i__] * (dpsi + dphi);
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    a = delta[*i__] * delta[*i__] * dpsi + delta[ip1] 
 | |
| 				    * delta[ip1] * dphi;
 | |
| 			}
 | |
| 		    }
 | |
| 		    eta = b / a;
 | |
| 		} else if (a <= 0.) {
 | |
| 		    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
 | |
| 			     / (c__ * 2.);
 | |
| 		} else {
 | |
| 		    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, 
 | |
| 			    abs(d__1))));
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Interpolation using THREE most relevant poles */
 | |
| 
 | |
| 		temp = rhoinv + psi + phi;
 | |
| 		if (swtch) {
 | |
| 		    c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
 | |
| 		    zz[0] = delta[iim1] * delta[iim1] * dpsi;
 | |
| 		    zz[2] = delta[iip1] * delta[iip1] * dphi;
 | |
| 		} else {
 | |
| 		    if (orgati) {
 | |
| 			temp1 = z__[iim1] / delta[iim1];
 | |
| 			temp1 *= temp1;
 | |
| 			c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] 
 | |
| 				- d__[iip1]) * temp1;
 | |
| 			zz[0] = z__[iim1] * z__[iim1];
 | |
| 			zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + 
 | |
| 				dphi);
 | |
| 		    } else {
 | |
| 			temp1 = z__[iip1] / delta[iip1];
 | |
| 			temp1 *= temp1;
 | |
| 			c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] 
 | |
| 				- d__[iim1]) * temp1;
 | |
| 			zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - 
 | |
| 				temp1));
 | |
| 			zz[2] = z__[iip1] * z__[iip1];
 | |
| 		    }
 | |
| 		}
 | |
| 		dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, 
 | |
| 			info);
 | |
| 		if (*info != 0) {
 | |
| 		    goto L250;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Note, eta should be positive if w is negative, and */
 | |
| /*           eta should be negative otherwise. However, */
 | |
| /*           if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*           we simply use one Newton step instead. This way */
 | |
| /*           will guarantee eta*w < 0. */
 | |
| 
 | |
| 	    if (w * eta >= 0.) {
 | |
| 		eta = -w / dw;
 | |
| 	    }
 | |
| 	    temp = tau + eta;
 | |
| 	    if (temp > dltub || temp < dltlb) {
 | |
| 		if (w < 0.) {
 | |
| 		    eta = (dltub - tau) / 2.;
 | |
| 		} else {
 | |
| 		    eta = (dltlb - tau) / 2.;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		delta[j] -= eta;
 | |
| /* L210: */
 | |
| 	    }
 | |
| 
 | |
| 	    tau += eta;
 | |
| 	    prew = w;
 | |
| 
 | |
| /*           Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	    dpsi = 0.;
 | |
| 	    psi = 0.;
 | |
| 	    erretm = 0.;
 | |
| 	    i__1 = iim1;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		temp = z__[j] / delta[j];
 | |
| 		psi += z__[j] * temp;
 | |
| 		dpsi += temp * temp;
 | |
| 		erretm += psi;
 | |
| /* L220: */
 | |
| 	    }
 | |
| 	    erretm = abs(erretm);
 | |
| 
 | |
| /*           Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	    dphi = 0.;
 | |
| 	    phi = 0.;
 | |
| 	    i__1 = iip1;
 | |
| 	    for (j = *n; j >= i__1; --j) {
 | |
| 		temp = z__[j] / delta[j];
 | |
| 		phi += z__[j] * temp;
 | |
| 		dphi += temp * temp;
 | |
| 		erretm += phi;
 | |
| /* L230: */
 | |
| 	    }
 | |
| 
 | |
| 	    temp = z__[ii] / delta[ii];
 | |
| 	    dw = dpsi + dphi + temp * temp;
 | |
| 	    temp = z__[ii] * temp;
 | |
| 	    w = rhoinv + phi + psi + temp;
 | |
| 	    erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. 
 | |
| 		    + abs(tau) * dw;
 | |
| 	    if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
 | |
| 		swtch = ! swtch;
 | |
| 	    }
 | |
| 
 | |
| /* L240: */
 | |
| 	}
 | |
| 
 | |
| /*        Return with INFO = 1, NITER = MAXIT and not converged */
 | |
| 
 | |
| 	*info = 1;
 | |
| 	if (orgati) {
 | |
| 	    *dlam = d__[*i__] + tau;
 | |
| 	} else {
 | |
| 	    *dlam = d__[ip1] + tau;
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| L250:
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DLAED4 */
 | |
| 
 | |
| } /* dlaed4_ */
 | |
| 
 |