1268 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1268 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b6 = -1.;
 | |
| static doublereal c_b8 = 1.;
 | |
| 
 | |
| /* > \brief \b DLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general 
 | |
| banded matrices by performing extra-precise iterative refinement and provides error bounds and backwar
 | |
| d error estimates for the solution. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DLA_GBRFSX_EXTENDED + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbr
 | |
| fsx_extended.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbr
 | |
| fsx_extended.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbr
 | |
| fsx_extended.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU, */
 | |
| /*                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV, */
 | |
| /*                                       COLEQU, C, B, LDB, Y, LDY, */
 | |
| /*                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM, */
 | |
| /*                                       ERR_BNDS_COMP, RES, AYB, DY, */
 | |
| /*                                       Y_TAIL, RCOND, ITHRESH, RTHRESH, */
 | |
| /*                                       DZ_UB, IGNORE_CWISE, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS, */
 | |
| /*      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH */
 | |
| /*       LOGICAL            COLEQU, IGNORE_CWISE */
 | |
| /*       DOUBLE PRECISION   RTHRESH, DZ_UB */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
 | |
| /*      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*) */
 | |
| /*       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*), */
 | |
| /*      $                   ERR_BNDS_NORM( NRHS, * ), */
 | |
| /*      $                   ERR_BNDS_COMP( NRHS, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > */
 | |
| /* > DLA_GBRFSX_EXTENDED improves the computed solution to a system of */
 | |
| /* > linear equations by performing extra-precise iterative refinement */
 | |
| /* > and provides error bounds and backward error estimates for the solution. */
 | |
| /* > This subroutine is called by DGBRFSX to perform iterative refinement. */
 | |
| /* > In addition to normwise error bound, the code provides maximum */
 | |
| /* > componentwise error bound if possible. See comments for ERR_BNDS_NORM */
 | |
| /* > and ERR_BNDS_COMP for details of the error bounds. Note that this */
 | |
| /* > subroutine is only resonsible for setting the second fields of */
 | |
| /* > ERR_BNDS_NORM and ERR_BNDS_COMP. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] PREC_TYPE */
 | |
| /* > \verbatim */
 | |
| /* >          PREC_TYPE is INTEGER */
 | |
| /* >     Specifies the intermediate precision to be used in refinement. */
 | |
| /* >     The value is defined by ILAPREC(P) where P is a CHARACTER and P */
 | |
| /* >          = 'S':  Single */
 | |
| /* >          = 'D':  Double */
 | |
| /* >          = 'I':  Indigenous */
 | |
| /* >          = 'X' or 'E':  Extra */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS_TYPE */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS_TYPE is INTEGER */
 | |
| /* >     Specifies the transposition operation on A. */
 | |
| /* >     The value is defined by ILATRANS(T) where T is a CHARACTER and T */
 | |
| /* >          = 'N':  No transpose */
 | |
| /* >          = 'T':  Transpose */
 | |
| /* >          = 'C':  Conjugate transpose */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >     The number of linear equations, i.e., the order of the */
 | |
| /* >     matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >     The number of subdiagonals within the band of A.  KL >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >     The number of superdiagonals within the band of A.  KU >= 0 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >     The number of right-hand-sides, i.e., the number of columns of the */
 | |
| /* >     matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is DOUBLE PRECISION array, dimension (LDAB,N) */
 | |
| /* >          On entry, the N-by-N matrix AB. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDBA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AFB */
 | |
| /* > \verbatim */
 | |
| /* >          AFB is DOUBLE PRECISION array, dimension (LDAFB,N) */
 | |
| /* >     The factors L and U from the factorization */
 | |
| /* >     A = P*L*U as computed by DGBTRF. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAFB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAFB is INTEGER */
 | |
| /* >     The leading dimension of the array AF.  LDAFB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >     The pivot indices from the factorization A = P*L*U */
 | |
| /* >     as computed by DGBTRF; row i of the matrix was interchanged */
 | |
| /* >     with row IPIV(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COLEQU */
 | |
| /* > \verbatim */
 | |
| /* >          COLEQU is LOGICAL */
 | |
| /* >     If .TRUE. then column equilibration was done to A before calling */
 | |
| /* >     this routine. This is needed to compute the solution and error */
 | |
| /* >     bounds correctly. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >     The column scale factors for A. If COLEQU = .FALSE., C */
 | |
| /* >     is not accessed. If C is input, each element of C should be a power */
 | |
| /* >     of the radix to ensure a reliable solution and error estimates. */
 | |
| /* >     Scaling by powers of the radix does not cause rounding errors unless */
 | |
| /* >     the result underflows or overflows. Rounding errors during scaling */
 | |
| /* >     lead to refining with a matrix that is not equivalent to the */
 | |
| /* >     input matrix, producing error estimates that may not be */
 | |
| /* >     reliable. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
 | |
| /* >     The right-hand-side matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >     The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Y */
 | |
| /* > \verbatim */
 | |
| /* >          Y is DOUBLE PRECISION array, dimension (LDY,NRHS) */
 | |
| /* >     On entry, the solution matrix X, as computed by DGBTRS. */
 | |
| /* >     On exit, the improved solution matrix Y. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDY */
 | |
| /* > \verbatim */
 | |
| /* >          LDY is INTEGER */
 | |
| /* >     The leading dimension of the array Y.  LDY >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BERR_OUT */
 | |
| /* > \verbatim */
 | |
| /* >          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) */
 | |
| /* >     On exit, BERR_OUT(j) contains the componentwise relative backward */
 | |
| /* >     error for right-hand-side j from the formula */
 | |
| /* >         f2cmax(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
 | |
| /* >     where abs(Z) is the componentwise absolute value of the matrix */
 | |
| /* >     or vector Z. This is computed by DLA_LIN_BERR. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N_NORMS */
 | |
| /* > \verbatim */
 | |
| /* >          N_NORMS is INTEGER */
 | |
| /* >     Determines which error bounds to return (see ERR_BNDS_NORM */
 | |
| /* >     and ERR_BNDS_COMP). */
 | |
| /* >     If N_NORMS >= 1 return normwise error bounds. */
 | |
| /* >     If N_NORMS >= 2 return componentwise error bounds. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ERR_BNDS_NORM */
 | |
| /* > \verbatim */
 | |
| /* >          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
 | |
| /* >     For each right-hand side, this array contains information about */
 | |
| /* >     various error bounds and condition numbers corresponding to the */
 | |
| /* >     normwise relative error, which is defined as follows: */
 | |
| /* > */
 | |
| /* >     Normwise relative error in the ith solution vector: */
 | |
| /* >             max_j (abs(XTRUE(j,i) - X(j,i))) */
 | |
| /* >            ------------------------------ */
 | |
| /* >                  max_j abs(X(j,i)) */
 | |
| /* > */
 | |
| /* >     The array is indexed by the type of error information as described */
 | |
| /* >     below. There currently are up to three pieces of information */
 | |
| /* >     returned. */
 | |
| /* > */
 | |
| /* >     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
 | |
| /* >     right-hand side. */
 | |
| /* > */
 | |
| /* >     The second index in ERR_BNDS_NORM(:,err) contains the following */
 | |
| /* >     three fields: */
 | |
| /* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | |
| /* >              reciprocal condition number is less than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). */
 | |
| /* > */
 | |
| /* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | |
| /* >              almost certainly within a factor of 10 of the true error */
 | |
| /* >              so long as the next entry is greater than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | |
| /* >              be trusted if the previous boolean is true. */
 | |
| /* > */
 | |
| /* >     err = 3  Reciprocal condition number: Estimated normwise */
 | |
| /* >              reciprocal condition number.  Compared with the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | |
| /* >              estimate is "guaranteed". These reciprocal condition */
 | |
| /* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | |
| /* >              appropriately scaled matrix Z. */
 | |
| /* >              Let Z = S*A, where S scales each row by a power of the */
 | |
| /* >              radix so all absolute row sums of Z are approximately 1. */
 | |
| /* > */
 | |
| /* >     This subroutine is only responsible for setting the second field */
 | |
| /* >     above. */
 | |
| /* >     See Lapack Working Note 165 for further details and extra */
 | |
| /* >     cautions. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ERR_BNDS_COMP */
 | |
| /* > \verbatim */
 | |
| /* >          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
 | |
| /* >     For each right-hand side, this array contains information about */
 | |
| /* >     various error bounds and condition numbers corresponding to the */
 | |
| /* >     componentwise relative error, which is defined as follows: */
 | |
| /* > */
 | |
| /* >     Componentwise relative error in the ith solution vector: */
 | |
| /* >                    abs(XTRUE(j,i) - X(j,i)) */
 | |
| /* >             max_j ---------------------- */
 | |
| /* >                         abs(X(j,i)) */
 | |
| /* > */
 | |
| /* >     The array is indexed by the right-hand side i (on which the */
 | |
| /* >     componentwise relative error depends), and the type of error */
 | |
| /* >     information as described below. There currently are up to three */
 | |
| /* >     pieces of information returned for each right-hand side. If */
 | |
| /* >     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
 | |
| /* >     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most */
 | |
| /* >     the first (:,N_ERR_BNDS) entries are returned. */
 | |
| /* > */
 | |
| /* >     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
 | |
| /* >     right-hand side. */
 | |
| /* > */
 | |
| /* >     The second index in ERR_BNDS_COMP(:,err) contains the following */
 | |
| /* >     three fields: */
 | |
| /* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | |
| /* >              reciprocal condition number is less than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). */
 | |
| /* > */
 | |
| /* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | |
| /* >              almost certainly within a factor of 10 of the true error */
 | |
| /* >              so long as the next entry is greater than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | |
| /* >              be trusted if the previous boolean is true. */
 | |
| /* > */
 | |
| /* >     err = 3  Reciprocal condition number: Estimated componentwise */
 | |
| /* >              reciprocal condition number.  Compared with the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | |
| /* >              estimate is "guaranteed". These reciprocal condition */
 | |
| /* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | |
| /* >              appropriately scaled matrix Z. */
 | |
| /* >              Let Z = S*(A*diag(x)), where x is the solution for the */
 | |
| /* >              current right-hand side and S scales each row of */
 | |
| /* >              A*diag(x) by a power of the radix so all absolute row */
 | |
| /* >              sums of Z are approximately 1. */
 | |
| /* > */
 | |
| /* >     This subroutine is only responsible for setting the second field */
 | |
| /* >     above. */
 | |
| /* >     See Lapack Working Note 165 for further details and extra */
 | |
| /* >     cautions. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RES */
 | |
| /* > \verbatim */
 | |
| /* >          RES is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >     Workspace to hold the intermediate residual. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AYB */
 | |
| /* > \verbatim */
 | |
| /* >          AYB is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >     Workspace. This can be the same workspace passed for Y_TAIL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DY */
 | |
| /* > \verbatim */
 | |
| /* >          DY is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >     Workspace to hold the intermediate solution. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Y_TAIL */
 | |
| /* > \verbatim */
 | |
| /* >          Y_TAIL is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >     Workspace to hold the trailing bits of the intermediate solution. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is DOUBLE PRECISION */
 | |
| /* >     Reciprocal scaled condition number.  This is an estimate of the */
 | |
| /* >     reciprocal Skeel condition number of the matrix A after */
 | |
| /* >     equilibration (if done).  If this is less than the machine */
 | |
| /* >     precision (in particular, if it is zero), the matrix is singular */
 | |
| /* >     to working precision.  Note that the error may still be small even */
 | |
| /* >     if this number is very small and the matrix appears ill- */
 | |
| /* >     conditioned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ITHRESH */
 | |
| /* > \verbatim */
 | |
| /* >          ITHRESH is INTEGER */
 | |
| /* >     The maximum number of residual computations allowed for */
 | |
| /* >     refinement. The default is 10. For 'aggressive' set to 100 to */
 | |
| /* >     permit convergence using approximate factorizations or */
 | |
| /* >     factorizations other than LU. If the factorization uses a */
 | |
| /* >     technique other than Gaussian elimination, the guarantees in */
 | |
| /* >     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTHRESH */
 | |
| /* > \verbatim */
 | |
| /* >          RTHRESH is DOUBLE PRECISION */
 | |
| /* >     Determines when to stop refinement if the error estimate stops */
 | |
| /* >     decreasing. Refinement will stop when the next solution no longer */
 | |
| /* >     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
 | |
| /* >     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
 | |
| /* >     default value is 0.5. For 'aggressive' set to 0.9 to permit */
 | |
| /* >     convergence on extremely ill-conditioned matrices. See LAWN 165 */
 | |
| /* >     for more details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DZ_UB */
 | |
| /* > \verbatim */
 | |
| /* >          DZ_UB is DOUBLE PRECISION */
 | |
| /* >     Determines when to start considering componentwise convergence. */
 | |
| /* >     Componentwise convergence is only considered after each component */
 | |
| /* >     of the solution Y is stable, which we definte as the relative */
 | |
| /* >     change in each component being less than DZ_UB. The default value */
 | |
| /* >     is 0.25, requiring the first bit to be stable. See LAWN 165 for */
 | |
| /* >     more details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IGNORE_CWISE */
 | |
| /* > \verbatim */
 | |
| /* >          IGNORE_CWISE is LOGICAL */
 | |
| /* >     If .TRUE. then ignore componentwise convergence. Default value */
 | |
| /* >     is .FALSE.. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >       = 0:  Successful exit. */
 | |
| /* >       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal */
 | |
| /* >             value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup doubleGBcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dla_gbrfsx_extended_(integer *prec_type__, integer *
 | |
| 	trans_type__, integer *n, integer *kl, integer *ku, integer *nrhs, 
 | |
| 	doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb, 
 | |
| 	integer *ipiv, logical *colequ, doublereal *c__, doublereal *b, 
 | |
| 	integer *ldb, doublereal *y, integer *ldy, doublereal *berr_out__, 
 | |
| 	integer *n_norms__, doublereal *err_bnds_norm__, doublereal *
 | |
| 	err_bnds_comp__, doublereal *res, doublereal *ayb, doublereal *dy, 
 | |
| 	doublereal *y_tail__, doublereal *rcond, integer *ithresh, doublereal 
 | |
| 	*rthresh, doublereal *dz_ub__, logical *ignore_cwise__, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
 | |
| 	    y_dim1, y_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
 | |
| 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3;
 | |
|     doublereal d__1, d__2;
 | |
|     char ch__1[1];
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal dx_x__, dz_z__;
 | |
|     extern /* Subroutine */ void dla_lin_berr_(integer *, integer *, integer *
 | |
| 	    , doublereal *, doublereal *, doublereal *);
 | |
|     doublereal ymin;
 | |
|     extern /* Subroutine */ void blas_dgbmv_x_(integer *, integer *, integer *
 | |
| 	    , integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    integer *);
 | |
|     doublereal dxratmax, dzratmax;
 | |
|     integer y_prec_state__;
 | |
|     extern /* Subroutine */ void blas_dgbmv2_x_(integer *, integer *, integer 
 | |
| 	    *, integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
 | |
| 	     integer *, integer *);
 | |
|     integer i__, j, m;
 | |
|     extern /* Subroutine */ void dla_gbamv_(integer *, integer *, integer *, 
 | |
| 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 
 | |
| 	    dgbmv_(char *, integer *, integer *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     doublereal dxrat;
 | |
|     logical incr_prec__;
 | |
|     doublereal dzrat;
 | |
|     extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *);
 | |
|     char trans[1];
 | |
|     doublereal normx, normy, myhugeval, prev_dz_z__;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal yk;
 | |
|     extern /* Subroutine */ void dgbtrs_(char *, integer *, integer *, integer 
 | |
| 	    *, integer *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *);
 | |
|     doublereal final_dx_x__;
 | |
|     extern /* Subroutine */ void dla_wwaddw_(integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *);
 | |
|     doublereal final_dz_z__, normdx;
 | |
|     extern /* Character */ VOID chla_transtype_(char *, integer *);
 | |
|     doublereal prevnormdx;
 | |
|     integer cnt;
 | |
|     doublereal dyk, eps;
 | |
|     integer x_state__, z_state__;
 | |
|     doublereal incr_thresh__;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     err_bnds_comp_dim1 = *nrhs;
 | |
|     err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
 | |
|     err_bnds_comp__ -= err_bnds_comp_offset;
 | |
|     err_bnds_norm_dim1 = *nrhs;
 | |
|     err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
 | |
|     err_bnds_norm__ -= err_bnds_norm_offset;
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     afb_dim1 = *ldafb;
 | |
|     afb_offset = 1 + afb_dim1 * 1;
 | |
|     afb -= afb_offset;
 | |
|     --ipiv;
 | |
|     --c__;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     y_dim1 = *ldy;
 | |
|     y_offset = 1 + y_dim1 * 1;
 | |
|     y -= y_offset;
 | |
|     --berr_out__;
 | |
|     --res;
 | |
|     --ayb;
 | |
|     --dy;
 | |
|     --y_tail__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (*info != 0) {
 | |
| 	return;
 | |
|     }
 | |
|     chla_transtype_(ch__1, trans_type__);
 | |
|     *(unsigned char *)trans = *(unsigned char *)&ch__1[0];
 | |
|     eps = dlamch_("Epsilon");
 | |
|     myhugeval = dlamch_("Overflow");
 | |
| /*     Force MYHUGEVAL to Inf */
 | |
|     myhugeval *= myhugeval;
 | |
| /*     Using MYHUGEVAL may lead to spurious underflows. */
 | |
|     incr_thresh__ = (doublereal) (*n) * eps;
 | |
|     m = *kl + *ku + 1;
 | |
|     i__1 = *nrhs;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	y_prec_state__ = 1;
 | |
| 	if (y_prec_state__ == 2) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		y_tail__[i__] = 0.;
 | |
| 	    }
 | |
| 	}
 | |
| 	dxrat = 0.;
 | |
| 	dxratmax = 0.;
 | |
| 	dzrat = 0.;
 | |
| 	dzratmax = 0.;
 | |
| 	final_dx_x__ = myhugeval;
 | |
| 	final_dz_z__ = myhugeval;
 | |
| 	prevnormdx = myhugeval;
 | |
| 	prev_dz_z__ = myhugeval;
 | |
| 	dz_z__ = myhugeval;
 | |
| 	dx_x__ = myhugeval;
 | |
| 	x_state__ = 1;
 | |
| 	z_state__ = 0;
 | |
| 	incr_prec__ = FALSE_;
 | |
| 	i__2 = *ithresh;
 | |
| 	for (cnt = 1; cnt <= i__2; ++cnt) {
 | |
| 
 | |
| /*        Compute residual RES = B_s - op(A_s) * Y, */
 | |
| /*            op(A) = A, A**T, or A**H depending on TRANS (and type). */
 | |
| 
 | |
| 	    dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
 | |
| 	    if (y_prec_state__ == 0) {
 | |
| 		dgbmv_(trans, &m, n, kl, ku, &c_b6, &ab[ab_offset], ldab, &y[
 | |
| 			j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1);
 | |
| 	    } else if (y_prec_state__ == 1) {
 | |
| 		blas_dgbmv_x__(trans_type__, n, n, kl, ku, &c_b6, &ab[
 | |
| 			ab_offset], ldab, &y[j * y_dim1 + 1], &c__1, &c_b8, &
 | |
| 			res[1], &c__1, prec_type__);
 | |
| 	    } else {
 | |
| 		blas_dgbmv2_x__(trans_type__, n, n, kl, ku, &c_b6, &ab[
 | |
| 			ab_offset], ldab, &y[j * y_dim1 + 1], &y_tail__[1], &
 | |
| 			c__1, &c_b8, &res[1], &c__1, prec_type__);
 | |
| 	    }
 | |
| /*        XXX: RES is no longer needed. */
 | |
| 	    dcopy_(n, &res[1], &c__1, &dy[1], &c__1);
 | |
| 	    dgbtrs_(trans, n, kl, ku, &c__1, &afb[afb_offset], ldafb, &ipiv[1]
 | |
| 		    , &dy[1], n, info);
 | |
| 
 | |
| /*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
 | |
| 
 | |
| 	    normx = 0.;
 | |
| 	    normy = 0.;
 | |
| 	    normdx = 0.;
 | |
| 	    dz_z__ = 0.;
 | |
| 	    ymin = myhugeval;
 | |
| 	    i__3 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));
 | |
| 		dyk = (d__1 = dy[i__], abs(d__1));
 | |
| 		if (yk != 0.) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = dz_z__, d__2 = dyk / yk;
 | |
| 		    dz_z__ = f2cmax(d__1,d__2);
 | |
| 		} else if (dyk != 0.) {
 | |
| 		    dz_z__ = myhugeval;
 | |
| 		}
 | |
| 		ymin = f2cmin(ymin,yk);
 | |
| 		normy = f2cmax(normy,yk);
 | |
| 		if (*colequ) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = normx, d__2 = yk * c__[i__];
 | |
| 		    normx = f2cmax(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 		    d__1 = normdx, d__2 = dyk * c__[i__];
 | |
| 		    normdx = f2cmax(d__1,d__2);
 | |
| 		} else {
 | |
| 		    normx = normy;
 | |
| 		    normdx = f2cmax(normdx,dyk);
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (normx != 0.) {
 | |
| 		dx_x__ = normdx / normx;
 | |
| 	    } else if (normdx == 0.) {
 | |
| 		dx_x__ = 0.;
 | |
| 	    } else {
 | |
| 		dx_x__ = myhugeval;
 | |
| 	    }
 | |
| 	    dxrat = normdx / prevnormdx;
 | |
| 	    dzrat = dz_z__ / prev_dz_z__;
 | |
| 
 | |
| /*         Check termination criteria. */
 | |
| 
 | |
| 	    if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy 
 | |
| 		    && y_prec_state__ < 2) {
 | |
| 		incr_prec__ = TRUE_;
 | |
| 	    }
 | |
| 	    if (x_state__ == 3 && dxrat <= *rthresh) {
 | |
| 		x_state__ = 1;
 | |
| 	    }
 | |
| 	    if (x_state__ == 1) {
 | |
| 		if (dx_x__ <= eps) {
 | |
| 		    x_state__ = 2;
 | |
| 		} else if (dxrat > *rthresh) {
 | |
| 		    if (y_prec_state__ != 2) {
 | |
| 			incr_prec__ = TRUE_;
 | |
| 		    } else {
 | |
| 			x_state__ = 3;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    if (dxrat > dxratmax) {
 | |
| 			dxratmax = dxrat;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (x_state__ > 1) {
 | |
| 		    final_dx_x__ = dx_x__;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
 | |
| 		z_state__ = 1;
 | |
| 	    }
 | |
| 	    if (z_state__ == 3 && dzrat <= *rthresh) {
 | |
| 		z_state__ = 1;
 | |
| 	    }
 | |
| 	    if (z_state__ == 1) {
 | |
| 		if (dz_z__ <= eps) {
 | |
| 		    z_state__ = 2;
 | |
| 		} else if (dz_z__ > *dz_ub__) {
 | |
| 		    z_state__ = 0;
 | |
| 		    dzratmax = 0.;
 | |
| 		    final_dz_z__ = myhugeval;
 | |
| 		} else if (dzrat > *rthresh) {
 | |
| 		    if (y_prec_state__ != 2) {
 | |
| 			incr_prec__ = TRUE_;
 | |
| 		    } else {
 | |
| 			z_state__ = 3;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    if (dzrat > dzratmax) {
 | |
| 			dzratmax = dzrat;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (z_state__ > 1) {
 | |
| 		    final_dz_z__ = dz_z__;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Exit if both normwise and componentwise stopped working, */
 | |
| /*           but if componentwise is unstable, let it go at least two */
 | |
| /*           iterations. */
 | |
| 
 | |
| 	    if (x_state__ != 1) {
 | |
| 		if (*ignore_cwise__) {
 | |
| 		    goto L666;
 | |
| 		}
 | |
| 		if (z_state__ == 3 || z_state__ == 2) {
 | |
| 		    goto L666;
 | |
| 		}
 | |
| 		if (z_state__ == 0 && cnt > 1) {
 | |
| 		    goto L666;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (incr_prec__) {
 | |
| 		incr_prec__ = FALSE_;
 | |
| 		++y_prec_state__;
 | |
| 		i__3 = *n;
 | |
| 		for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		    y_tail__[i__] = 0.;
 | |
| 		}
 | |
| 	    }
 | |
| 	    prevnormdx = normdx;
 | |
| 	    prev_dz_z__ = dz_z__;
 | |
| 
 | |
| /*           Update soluton. */
 | |
| 
 | |
| 	    if (y_prec_state__ < 2) {
 | |
| 		daxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
 | |
| 	    } else {
 | |
| 		dla_wwaddw_(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
 | |
| 	    }
 | |
| 	}
 | |
| /*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't CALL MYEXIT. */
 | |
| L666:
 | |
| 
 | |
| /*     Set final_* when cnt hits ithresh. */
 | |
| 
 | |
| 	if (x_state__ == 1) {
 | |
| 	    final_dx_x__ = dx_x__;
 | |
| 	}
 | |
| 	if (z_state__ == 1) {
 | |
| 	    final_dz_z__ = dz_z__;
 | |
| 	}
 | |
| 
 | |
| /*     Compute error bounds. */
 | |
| 
 | |
| 	if (*n_norms__ >= 1) {
 | |
| 	    err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / (
 | |
| 		    1 - dxratmax);
 | |
| 	}
 | |
| 	if (*n_norms__ >= 2) {
 | |
| 	    err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / (
 | |
| 		    1 - dzratmax);
 | |
| 	}
 | |
| 
 | |
| /*     Compute componentwise relative backward error from formula */
 | |
| /*         f2cmax(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
 | |
| /*     where abs(Z) is the componentwise absolute value of the matrix */
 | |
| /*     or vector Z. */
 | |
| 
 | |
| /*        Compute residual RES = B_s - op(A_s) * Y, */
 | |
| /*            op(A) = A, A**T, or A**H depending on TRANS (and type). */
 | |
| 
 | |
| 	dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
 | |
| 	dgbmv_(trans, n, n, kl, ku, &c_b6, &ab[ab_offset], ldab, &y[j * 
 | |
| 		y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1);
 | |
| 	i__2 = *n;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
 | |
| 	}
 | |
| 
 | |
| /*     Compute abs(op(A_s))*abs(Y) + abs(B_s). */
 | |
| 
 | |
| 	dla_gbamv_(trans_type__, n, n, kl, ku, &c_b8, &ab[ab_offset], ldab, &
 | |
| 		y[j * y_dim1 + 1], &c__1, &c_b8, &ayb[1], &c__1);
 | |
| 	dla_lin_berr_(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
 | |
| 
 | |
| /*     End of loop for each RHS */
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| } /* dla_gbrfsx_extended__ */
 | |
| 
 |