528 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DHSEIN
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DHSEIN + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
 | |
| *                          VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
 | |
| *                          IFAILR, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          EIGSRC, INITV, SIDE
 | |
| *       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       INTEGER            IFAILL( * ), IFAILR( * )
 | |
| *       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   WI( * ), WORK( * ), WR( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DHSEIN uses inverse iteration to find specified right and/or left
 | |
| *> eigenvectors of a real upper Hessenberg matrix H.
 | |
| *>
 | |
| *> The right eigenvector x and the left eigenvector y of the matrix H
 | |
| *> corresponding to an eigenvalue w are defined by:
 | |
| *>
 | |
| *>              H * x = w * x,     y**h * H = w * y**h
 | |
| *>
 | |
| *> where y**h denotes the conjugate transpose of the vector y.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'R': compute right eigenvectors only;
 | |
| *>          = 'L': compute left eigenvectors only;
 | |
| *>          = 'B': compute both right and left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EIGSRC
 | |
| *> \verbatim
 | |
| *>          EIGSRC is CHARACTER*1
 | |
| *>          Specifies the source of eigenvalues supplied in (WR,WI):
 | |
| *>          = 'Q': the eigenvalues were found using DHSEQR; thus, if
 | |
| *>                 H has zero subdiagonal elements, and so is
 | |
| *>                 block-triangular, then the j-th eigenvalue can be
 | |
| *>                 assumed to be an eigenvalue of the block containing
 | |
| *>                 the j-th row/column.  This property allows DHSEIN to
 | |
| *>                 perform inverse iteration on just one diagonal block.
 | |
| *>          = 'N': no assumptions are made on the correspondence
 | |
| *>                 between eigenvalues and diagonal blocks.  In this
 | |
| *>                 case, DHSEIN must always perform inverse iteration
 | |
| *>                 using the whole matrix H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INITV
 | |
| *> \verbatim
 | |
| *>          INITV is CHARACTER*1
 | |
| *>          = 'N': no initial vectors are supplied;
 | |
| *>          = 'U': user-supplied initial vectors are stored in the arrays
 | |
| *>                 VL and/or VR.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          Specifies the eigenvectors to be computed. To select the
 | |
| *>          real eigenvector corresponding to a real eigenvalue WR(j),
 | |
| *>          SELECT(j) must be set to .TRUE.. To select the complex
 | |
| *>          eigenvector corresponding to a complex eigenvalue
 | |
| *>          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
 | |
| *>          either SELECT(j) or SELECT(j+1) or both must be set to
 | |
| *>          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
 | |
| *>          .FALSE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix H.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] H
 | |
| *> \verbatim
 | |
| *>          H is DOUBLE PRECISION array, dimension (LDH,N)
 | |
| *>          The upper Hessenberg matrix H.
 | |
| *>          If a NaN is detected in H, the routine will return with INFO=-6.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>          The leading dimension of the array H.  LDH >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] WR
 | |
| *> \verbatim
 | |
| *>          WR is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION array, dimension (N)
 | |
| *>
 | |
| *>          On entry, the real and imaginary parts of the eigenvalues of
 | |
| *>          H; a complex conjugate pair of eigenvalues must be stored in
 | |
| *>          consecutive elements of WR and WI.
 | |
| *>          On exit, WR may have been altered since close eigenvalues
 | |
| *>          are perturbed slightly in searching for independent
 | |
| *>          eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION array, dimension (LDVL,MM)
 | |
| *>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
 | |
| *>          contain starting vectors for the inverse iteration for the
 | |
| *>          left eigenvectors; the starting vector for each eigenvector
 | |
| *>          must be in the same column(s) in which the eigenvector will
 | |
| *>          be stored.
 | |
| *>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
 | |
| *>          specified by SELECT will be stored consecutively in the
 | |
| *>          columns of VL, in the same order as their eigenvalues. A
 | |
| *>          complex eigenvector corresponding to a complex eigenvalue is
 | |
| *>          stored in two consecutive columns, the first holding the real
 | |
| *>          part and the second the imaginary part.
 | |
| *>          If SIDE = 'R', VL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.
 | |
| *>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VR
 | |
| *> \verbatim
 | |
| *>          VR is DOUBLE PRECISION array, dimension (LDVR,MM)
 | |
| *>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
 | |
| *>          contain starting vectors for the inverse iteration for the
 | |
| *>          right eigenvectors; the starting vector for each eigenvector
 | |
| *>          must be in the same column(s) in which the eigenvector will
 | |
| *>          be stored.
 | |
| *>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
 | |
| *>          specified by SELECT will be stored consecutively in the
 | |
| *>          columns of VR, in the same order as their eigenvalues. A
 | |
| *>          complex eigenvector corresponding to a complex eigenvalue is
 | |
| *>          stored in two consecutive columns, the first holding the real
 | |
| *>          part and the second the imaginary part.
 | |
| *>          If SIDE = 'L', VR is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.
 | |
| *>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MM
 | |
| *> \verbatim
 | |
| *>          MM is INTEGER
 | |
| *>          The number of columns in the arrays VL and/or VR. MM >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns in the arrays VL and/or VR required to
 | |
| *>          store the eigenvectors; each selected real eigenvector
 | |
| *>          occupies one column and each selected complex eigenvector
 | |
| *>          occupies two columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension ((N+2)*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IFAILL
 | |
| *> \verbatim
 | |
| *>          IFAILL is INTEGER array, dimension (MM)
 | |
| *>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
 | |
| *>          eigenvector in the i-th column of VL (corresponding to the
 | |
| *>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
 | |
| *>          eigenvector converged satisfactorily. If the i-th and (i+1)th
 | |
| *>          columns of VL hold a complex eigenvector, then IFAILL(i) and
 | |
| *>          IFAILL(i+1) are set to the same value.
 | |
| *>          If SIDE = 'R', IFAILL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IFAILR
 | |
| *> \verbatim
 | |
| *>          IFAILR is INTEGER array, dimension (MM)
 | |
| *>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
 | |
| *>          eigenvector in the i-th column of VR (corresponding to the
 | |
| *>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
 | |
| *>          eigenvector converged satisfactorily. If the i-th and (i+1)th
 | |
| *>          columns of VR hold a complex eigenvector, then IFAILR(i) and
 | |
| *>          IFAILR(i+1) are set to the same value.
 | |
| *>          If SIDE = 'L', IFAILR is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, i is the number of eigenvectors which
 | |
| *>                failed to converge; see IFAILL and IFAILR for further
 | |
| *>                details.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Each eigenvector is normalized so that the element of largest
 | |
| *>  magnitude has magnitude 1; here the magnitude of a complex number
 | |
| *>  (x,y) is taken to be |x|+|y|.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
 | |
|      $                   VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
 | |
|      $                   IFAILR, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          EIGSRC, INITV, SIDE
 | |
|       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       INTEGER            IFAILL( * ), IFAILR( * )
 | |
|       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   WI( * ), WORK( * ), WR( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, PAIR, RIGHTV
 | |
|       INTEGER            I, IINFO, K, KL, KLN, KR, KSI, KSR, LDWORK
 | |
|       DOUBLE PRECISION   BIGNUM, EPS3, HNORM, SMLNUM, ULP, UNFL, WKI,
 | |
|      $                   WKR
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       DOUBLE PRECISION   DLAMCH, DLANHS
 | |
|       EXTERNAL           LSAME, DLAMCH, DLANHS, DISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLAEIN, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters.
 | |
| *
 | |
|       BOTHV = LSAME( SIDE, 'B' )
 | |
|       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
 | |
|       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
 | |
| *
 | |
|       FROMQR = LSAME( EIGSRC, 'Q' )
 | |
| *
 | |
|       NOINIT = LSAME( INITV, 'N' )
 | |
| *
 | |
| *     Set M to the number of columns required to store the selected
 | |
| *     eigenvectors, and standardize the array SELECT.
 | |
| *
 | |
|       M = 0
 | |
|       PAIR = .FALSE.
 | |
|       DO 10 K = 1, N
 | |
|          IF( PAIR ) THEN
 | |
|             PAIR = .FALSE.
 | |
|             SELECT( K ) = .FALSE.
 | |
|          ELSE
 | |
|             IF( WI( K ).EQ.ZERO ) THEN
 | |
|                IF( SELECT( K ) )
 | |
|      $            M = M + 1
 | |
|             ELSE
 | |
|                PAIR = .TRUE.
 | |
|                IF( SELECT( K ) .OR. SELECT( K+1 ) ) THEN
 | |
|                   SELECT( K ) = .TRUE.
 | |
|                   M = M + 2
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( MM.LT.M ) THEN
 | |
|          INFO = -14
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DHSEIN', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set machine-dependent constants.
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       ULP = DLAMCH( 'Precision' )
 | |
|       SMLNUM = UNFL*( N / ULP )
 | |
|       BIGNUM = ( ONE-ULP ) / SMLNUM
 | |
| *
 | |
|       LDWORK = N + 1
 | |
| *
 | |
|       KL = 1
 | |
|       KLN = 0
 | |
|       IF( FROMQR ) THEN
 | |
|          KR = 0
 | |
|       ELSE
 | |
|          KR = N
 | |
|       END IF
 | |
|       KSR = 1
 | |
| *
 | |
|       DO 120 K = 1, N
 | |
|          IF( SELECT( K ) ) THEN
 | |
| *
 | |
| *           Compute eigenvector(s) corresponding to W(K).
 | |
| *
 | |
|             IF( FROMQR ) THEN
 | |
| *
 | |
| *              If affiliation of eigenvalues is known, check whether
 | |
| *              the matrix splits.
 | |
| *
 | |
| *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
 | |
| *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
 | |
| *              KR = N).
 | |
| *
 | |
| *              Then inverse iteration can be performed with the
 | |
| *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
 | |
| *              the submatrix H(1:KR,1:KR) for a right eigenvector.
 | |
| *
 | |
|                DO 20 I = K, KL + 1, -1
 | |
|                   IF( H( I, I-1 ).EQ.ZERO )
 | |
|      $               GO TO 30
 | |
|    20          CONTINUE
 | |
|    30          CONTINUE
 | |
|                KL = I
 | |
|                IF( K.GT.KR ) THEN
 | |
|                   DO 40 I = K, N - 1
 | |
|                      IF( H( I+1, I ).EQ.ZERO )
 | |
|      $                  GO TO 50
 | |
|    40             CONTINUE
 | |
|    50             CONTINUE
 | |
|                   KR = I
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IF( KL.NE.KLN ) THEN
 | |
|                KLN = KL
 | |
| *
 | |
| *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
 | |
| *              has not ben computed before.
 | |
| *
 | |
|                HNORM = DLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, WORK )
 | |
|                IF( DISNAN( HNORM ) ) THEN
 | |
|                   INFO = -6
 | |
|                   RETURN
 | |
|                ELSE IF( HNORM.GT.ZERO ) THEN
 | |
|                   EPS3 = HNORM*ULP
 | |
|                ELSE
 | |
|                   EPS3 = SMLNUM
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Perturb eigenvalue if it is close to any previous
 | |
| *           selected eigenvalues affiliated to the submatrix
 | |
| *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
 | |
| *
 | |
|             WKR = WR( K )
 | |
|             WKI = WI( K )
 | |
|    60       CONTINUE
 | |
|             DO 70 I = K - 1, KL, -1
 | |
|                IF( SELECT( I ) .AND. ABS( WR( I )-WKR )+
 | |
|      $             ABS( WI( I )-WKI ).LT.EPS3 ) THEN
 | |
|                   WKR = WKR + EPS3
 | |
|                   GO TO 60
 | |
|                END IF
 | |
|    70       CONTINUE
 | |
|             WR( K ) = WKR
 | |
| *
 | |
|             PAIR = WKI.NE.ZERO
 | |
|             IF( PAIR ) THEN
 | |
|                KSI = KSR + 1
 | |
|             ELSE
 | |
|                KSI = KSR
 | |
|             END IF
 | |
|             IF( LEFTV ) THEN
 | |
| *
 | |
| *              Compute left eigenvector.
 | |
| *
 | |
|                CALL DLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
 | |
|      $                      WKR, WKI, VL( KL, KSR ), VL( KL, KSI ),
 | |
|      $                      WORK, LDWORK, WORK( N*N+N+1 ), EPS3, SMLNUM,
 | |
|      $                      BIGNUM, IINFO )
 | |
|                IF( IINFO.GT.0 ) THEN
 | |
|                   IF( PAIR ) THEN
 | |
|                      INFO = INFO + 2
 | |
|                   ELSE
 | |
|                      INFO = INFO + 1
 | |
|                   END IF
 | |
|                   IFAILL( KSR ) = K
 | |
|                   IFAILL( KSI ) = K
 | |
|                ELSE
 | |
|                   IFAILL( KSR ) = 0
 | |
|                   IFAILL( KSI ) = 0
 | |
|                END IF
 | |
|                DO 80 I = 1, KL - 1
 | |
|                   VL( I, KSR ) = ZERO
 | |
|    80          CONTINUE
 | |
|                IF( PAIR ) THEN
 | |
|                   DO 90 I = 1, KL - 1
 | |
|                      VL( I, KSI ) = ZERO
 | |
|    90             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( RIGHTV ) THEN
 | |
| *
 | |
| *              Compute right eigenvector.
 | |
| *
 | |
|                CALL DLAEIN( .TRUE., NOINIT, KR, H, LDH, WKR, WKI,
 | |
|      $                      VR( 1, KSR ), VR( 1, KSI ), WORK, LDWORK,
 | |
|      $                      WORK( N*N+N+1 ), EPS3, SMLNUM, BIGNUM,
 | |
|      $                      IINFO )
 | |
|                IF( IINFO.GT.0 ) THEN
 | |
|                   IF( PAIR ) THEN
 | |
|                      INFO = INFO + 2
 | |
|                   ELSE
 | |
|                      INFO = INFO + 1
 | |
|                   END IF
 | |
|                   IFAILR( KSR ) = K
 | |
|                   IFAILR( KSI ) = K
 | |
|                ELSE
 | |
|                   IFAILR( KSR ) = 0
 | |
|                   IFAILR( KSI ) = 0
 | |
|                END IF
 | |
|                DO 100 I = KR + 1, N
 | |
|                   VR( I, KSR ) = ZERO
 | |
|   100          CONTINUE
 | |
|                IF( PAIR ) THEN
 | |
|                   DO 110 I = KR + 1, N
 | |
|                      VR( I, KSI ) = ZERO
 | |
|   110             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IF( PAIR ) THEN
 | |
|                KSR = KSR + 2
 | |
|             ELSE
 | |
|                KSR = KSR + 1
 | |
|             END IF
 | |
|          END IF
 | |
|   120 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DHSEIN
 | |
| *
 | |
|       END
 |