2110 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2110 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b12 = 0.;
 | |
| static doublereal c_b13 = 1.;
 | |
| static integer c__1 = 1;
 | |
| static integer c__3 = 3;
 | |
| 
 | |
| /* > \brief \b DHGEQZ */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DHGEQZ + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhgeqz.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhgeqz.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhgeqz.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, */
 | |
| /*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, */
 | |
| /*                          LWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          COMPQ, COMPZ, JOB */
 | |
| /*       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N */
 | |
| /*       DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ), */
 | |
| /*      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ), */
 | |
| /*      $                   WORK( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DHGEQZ computes the eigenvalues of a real matrix pair (H,T), */
 | |
| /* > where H is an upper Hessenberg matrix and T is upper triangular, */
 | |
| /* > using the double-shift QZ method. */
 | |
| /* > Matrix pairs of this type are produced by the reduction to */
 | |
| /* > generalized upper Hessenberg form of a real matrix pair (A,B): */
 | |
| /* > */
 | |
| /* >    A = Q1*H*Z1**T,  B = Q1*T*Z1**T, */
 | |
| /* > */
 | |
| /* > as computed by DGGHRD. */
 | |
| /* > */
 | |
| /* > If JOB='S', then the Hessenberg-triangular pair (H,T) is */
 | |
| /* > also reduced to generalized Schur form, */
 | |
| /* > */
 | |
| /* >    H = Q*S*Z**T,  T = Q*P*Z**T, */
 | |
| /* > */
 | |
| /* > where Q and Z are orthogonal matrices, P is an upper triangular */
 | |
| /* > matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 */
 | |
| /* > diagonal blocks. */
 | |
| /* > */
 | |
| /* > The 1-by-1 blocks correspond to real eigenvalues of the matrix pair */
 | |
| /* > (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of */
 | |
| /* > eigenvalues. */
 | |
| /* > */
 | |
| /* > Additionally, the 2-by-2 upper triangular diagonal blocks of P */
 | |
| /* > corresponding to 2-by-2 blocks of S are reduced to positive diagonal */
 | |
| /* > form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, */
 | |
| /* > P(j,j) > 0, and P(j+1,j+1) > 0. */
 | |
| /* > */
 | |
| /* > Optionally, the orthogonal matrix Q from the generalized Schur */
 | |
| /* > factorization may be postmultiplied into an input matrix Q1, and the */
 | |
| /* > orthogonal matrix Z may be postmultiplied into an input matrix Z1. */
 | |
| /* > If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced */
 | |
| /* > the matrix pair (A,B) to generalized upper Hessenberg form, then the */
 | |
| /* > output matrices Q1*Q and Z1*Z are the orthogonal factors from the */
 | |
| /* > generalized Schur factorization of (A,B): */
 | |
| /* > */
 | |
| /* >    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T. */
 | |
| /* > */
 | |
| /* > To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, */
 | |
| /* > of (A,B)) are computed as a pair of values (alpha,beta), where alpha is */
 | |
| /* > complex and beta real. */
 | |
| /* > If beta is nonzero, lambda = alpha / beta is an eigenvalue of the */
 | |
| /* > generalized nonsymmetric eigenvalue problem (GNEP) */
 | |
| /* >    A*x = lambda*B*x */
 | |
| /* > and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
 | |
| /* > alternate form of the GNEP */
 | |
| /* >    mu*A*y = B*y. */
 | |
| /* > Real eigenvalues can be read directly from the generalized Schur */
 | |
| /* > form: */
 | |
| /* >   alpha = S(i,i), beta = P(i,i). */
 | |
| /* > */
 | |
| /* > Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
 | |
| /* >      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
 | |
| /* >      pp. 241--256. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOB */
 | |
| /* > \verbatim */
 | |
| /* >          JOB is CHARACTER*1 */
 | |
| /* >          = 'E': Compute eigenvalues only; */
 | |
| /* >          = 'S': Compute eigenvalues and the Schur form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPQ is CHARACTER*1 */
 | |
| /* >          = 'N': Left Schur vectors (Q) are not computed; */
 | |
| /* >          = 'I': Q is initialized to the unit matrix and the matrix Q */
 | |
| /* >                 of left Schur vectors of (H,T) is returned; */
 | |
| /* >          = 'V': Q must contain an orthogonal matrix Q1 on entry and */
 | |
| /* >                 the product Q1*Q is returned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COMPZ */
 | |
| /* > \verbatim */
 | |
| /* >          COMPZ is CHARACTER*1 */
 | |
| /* >          = 'N': Right Schur vectors (Z) are not computed; */
 | |
| /* >          = 'I': Z is initialized to the unit matrix and the matrix Z */
 | |
| /* >                 of right Schur vectors of (H,T) is returned; */
 | |
| /* >          = 'V': Z must contain an orthogonal matrix Z1 on entry and */
 | |
| /* >                 the product Z1*Z is returned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices H, T, Q, and Z.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >          ILO and IHI mark the rows and columns of H which are in */
 | |
| /* >          Hessenberg form.  It is assumed that A is already upper */
 | |
| /* >          triangular in rows and columns 1:ILO-1 and IHI+1:N. */
 | |
| /* >          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is DOUBLE PRECISION array, dimension (LDH, N) */
 | |
| /* >          On entry, the N-by-N upper Hessenberg matrix H. */
 | |
| /* >          On exit, if JOB = 'S', H contains the upper quasi-triangular */
 | |
| /* >          matrix S from the generalized Schur factorization. */
 | |
| /* >          If JOB = 'E', the diagonal blocks of H match those of S, but */
 | |
| /* >          the rest of H is unspecified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          The leading dimension of the array H.  LDH >= f2cmax( 1, N ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is DOUBLE PRECISION array, dimension (LDT, N) */
 | |
| /* >          On entry, the N-by-N upper triangular matrix T. */
 | |
| /* >          On exit, if JOB = 'S', T contains the upper triangular */
 | |
| /* >          matrix P from the generalized Schur factorization; */
 | |
| /* >          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S */
 | |
| /* >          are reduced to positive diagonal form, i.e., if H(j+1,j) is */
 | |
| /* >          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and */
 | |
| /* >          T(j+1,j+1) > 0. */
 | |
| /* >          If JOB = 'E', the diagonal blocks of T match those of P, but */
 | |
| /* >          the rest of T is unspecified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T.  LDT >= f2cmax( 1, N ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAR */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAR is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The real parts of each scalar alpha defining an eigenvalue */
 | |
| /* >          of GNEP. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAI */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAI is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The imaginary parts of each scalar alpha defining an */
 | |
| /* >          eigenvalue of GNEP. */
 | |
| /* >          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 | |
| /* >          positive, then the j-th and (j+1)-st eigenvalues are a */
 | |
| /* >          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The scalars beta that define the eigenvalues of GNEP. */
 | |
| /* >          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 | |
| /* >          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 | |
| /* >          pair (A,B), in one of the forms lambda = alpha/beta or */
 | |
| /* >          mu = beta/alpha.  Since either lambda or mu may overflow, */
 | |
| /* >          they should not, in general, be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is DOUBLE PRECISION array, dimension (LDQ, N) */
 | |
| /* >          On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in */
 | |
| /* >          the reduction of (A,B) to generalized Hessenberg form. */
 | |
| /* >          On exit, if COMPQ = 'I', the orthogonal matrix of left Schur */
 | |
| /* >          vectors of (H,T), and if COMPQ = 'V', the orthogonal matrix */
 | |
| /* >          of left Schur vectors of (A,B). */
 | |
| /* >          Not referenced if COMPQ = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q.  LDQ >= 1. */
 | |
| /* >          If COMPQ='V' or 'I', then LDQ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension (LDZ, N) */
 | |
| /* >          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in */
 | |
| /* >          the reduction of (A,B) to generalized Hessenberg form. */
 | |
| /* >          On exit, if COMPZ = 'I', the orthogonal matrix of */
 | |
| /* >          right Schur vectors of (H,T), and if COMPZ = 'V', the */
 | |
| /* >          orthogonal matrix of right Schur vectors of (A,B). */
 | |
| /* >          Not referenced if COMPZ = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z.  LDZ >= 1. */
 | |
| /* >          If COMPZ='V' or 'I', then LDZ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK.  LWORK >= f2cmax(1,N). */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          = 1,...,N: the QZ iteration did not converge.  (H,T) is not */
 | |
| /* >                     in Schur form, but ALPHAR(i), ALPHAI(i), and */
 | |
| /* >                     BETA(i), i=INFO+1,...,N should be correct. */
 | |
| /* >          = N+1,...,2*N: the shift calculation failed.  (H,T) is not */
 | |
| /* >                     in Schur form, but ALPHAR(i), ALPHAI(i), and */
 | |
| /* >                     BETA(i), i=INFO-N+1,...,N should be correct. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup doubleGEcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Iteration counters: */
 | |
| /* > */
 | |
| /* >  JITER  -- counts iterations. */
 | |
| /* >  IITER  -- counts iterations run since ILAST was last */
 | |
| /* >            changed.  This is therefore reset only when a 1-by-1 or */
 | |
| /* >            2-by-2 block deflates off the bottom. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dhgeqz_(char *job, char *compq, char *compz, integer *n, 
 | |
| 	integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal 
 | |
| 	*t, integer *ldt, doublereal *alphar, doublereal *alphai, doublereal *
 | |
| 	beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz, 
 | |
| 	doublereal *work, integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1, 
 | |
| 	    z_offset, i__1, i__2, i__3, i__4;
 | |
|     doublereal d__1, d__2, d__3, d__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal ad11l, ad12l, ad21l, ad22l, ad32l, wabs, atol, btol, temp;
 | |
|     extern /* Subroutine */ void drot_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *), dlag2_(
 | |
| 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *);
 | |
|     doublereal temp2, s1inv, c__;
 | |
|     integer j;
 | |
|     doublereal s, v[3], scale;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iiter, ilast, jiter;
 | |
|     doublereal anorm, bnorm;
 | |
|     integer maxit;
 | |
|     doublereal tempi, tempr, s1, s2, t1, u1, u2;
 | |
|     extern doublereal dlapy2_(doublereal *, doublereal *), dlapy3_(doublereal 
 | |
| 	    *, doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ void dlasv2_(doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *);
 | |
|     logical ilazr2;
 | |
|     doublereal a11, a12, a21, a22, b11, b22, c12, c21;
 | |
|     integer jc;
 | |
|     doublereal an, bn, cl, cq, cr;
 | |
|     integer in;
 | |
|     doublereal ascale, bscale, u12, w11;
 | |
|     integer jr;
 | |
|     doublereal cz, sl, w12, w21, w22, wi;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal sr;
 | |
|     extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *);
 | |
|     doublereal vs, wr;
 | |
|     extern doublereal dlanhs_(char *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *);
 | |
|     extern /* Subroutine */ void dlaset_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *);
 | |
|     doublereal safmin;
 | |
|     extern /* Subroutine */ void dlartg_(doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *);
 | |
|     doublereal safmax;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal eshift;
 | |
|     logical ilschr;
 | |
|     doublereal b1a, b2a;
 | |
|     integer icompq, ilastm;
 | |
|     doublereal a1i;
 | |
|     integer ischur;
 | |
|     doublereal a2i, b1i;
 | |
|     logical ilazro;
 | |
|     integer icompz, ifirst;
 | |
|     doublereal b2i;
 | |
|     integer ifrstm;
 | |
|     doublereal a1r;
 | |
|     integer istart;
 | |
|     logical ilpivt;
 | |
|     doublereal a2r, b1r, b2r;
 | |
|     logical lquery;
 | |
|     doublereal wr2, ad11, ad12, ad21, ad22, c11i, c22i;
 | |
|     integer jch;
 | |
|     doublereal c11r, c22r;
 | |
|     logical ilq;
 | |
|     doublereal u12l, tau, sqi;
 | |
|     logical ilz;
 | |
|     doublereal ulp, sqr, szi, szr;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*    $                     SAFETY = 1.0E+0 ) */
 | |
| 
 | |
| /*     Decode JOB, COMPQ, COMPZ */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     --alphar;
 | |
|     --alphai;
 | |
|     --beta;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(job, "E")) {
 | |
| 	ilschr = FALSE_;
 | |
| 	ischur = 1;
 | |
|     } else if (lsame_(job, "S")) {
 | |
| 	ilschr = TRUE_;
 | |
| 	ischur = 2;
 | |
|     } else {
 | |
| 	ischur = 0;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(compq, "N")) {
 | |
| 	ilq = FALSE_;
 | |
| 	icompq = 1;
 | |
|     } else if (lsame_(compq, "V")) {
 | |
| 	ilq = TRUE_;
 | |
| 	icompq = 2;
 | |
|     } else if (lsame_(compq, "I")) {
 | |
| 	ilq = TRUE_;
 | |
| 	icompq = 3;
 | |
|     } else {
 | |
| 	icompq = 0;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(compz, "N")) {
 | |
| 	ilz = FALSE_;
 | |
| 	icompz = 1;
 | |
|     } else if (lsame_(compz, "V")) {
 | |
| 	ilz = TRUE_;
 | |
| 	icompz = 2;
 | |
|     } else if (lsame_(compz, "I")) {
 | |
| 	ilz = TRUE_;
 | |
| 	icompz = 3;
 | |
|     } else {
 | |
| 	icompz = 0;
 | |
|     }
 | |
| 
 | |
| /*     Check Argument Values */
 | |
| 
 | |
|     *info = 0;
 | |
|     work[1] = (doublereal) f2cmax(1,*n);
 | |
|     lquery = *lwork == -1;
 | |
|     if (ischur == 0) {
 | |
| 	*info = -1;
 | |
|     } else if (icompq == 0) {
 | |
| 	*info = -2;
 | |
|     } else if (icompz == 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ilo < 1) {
 | |
| 	*info = -5;
 | |
|     } else if (*ihi > *n || *ihi < *ilo - 1) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldh < *n) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldt < *n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldq < 1 || ilq && *ldq < *n) {
 | |
| 	*info = -15;
 | |
|     } else if (*ldz < 1 || ilz && *ldz < *n) {
 | |
| 	*info = -17;
 | |
|     } else if (*lwork < f2cmax(1,*n) && ! lquery) {
 | |
| 	*info = -19;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DHGEQZ", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 0) {
 | |
| 	work[1] = 1.;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize Q and Z */
 | |
| 
 | |
|     if (icompq == 3) {
 | |
| 	dlaset_("Full", n, n, &c_b12, &c_b13, &q[q_offset], ldq);
 | |
|     }
 | |
|     if (icompz == 3) {
 | |
| 	dlaset_("Full", n, n, &c_b12, &c_b13, &z__[z_offset], ldz);
 | |
|     }
 | |
| 
 | |
| /*     Machine Constants */
 | |
| 
 | |
|     in = *ihi + 1 - *ilo;
 | |
|     safmin = dlamch_("S");
 | |
|     safmax = 1. / safmin;
 | |
|     ulp = dlamch_("E") * dlamch_("B");
 | |
|     anorm = dlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &work[1]);
 | |
|     bnorm = dlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &work[1]);
 | |
| /* Computing MAX */
 | |
|     d__1 = safmin, d__2 = ulp * anorm;
 | |
|     atol = f2cmax(d__1,d__2);
 | |
| /* Computing MAX */
 | |
|     d__1 = safmin, d__2 = ulp * bnorm;
 | |
|     btol = f2cmax(d__1,d__2);
 | |
|     ascale = 1. / f2cmax(safmin,anorm);
 | |
|     bscale = 1. / f2cmax(safmin,bnorm);
 | |
| 
 | |
| /*     Set Eigenvalues IHI+1:N */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (j = *ihi + 1; j <= i__1; ++j) {
 | |
| 	if (t[j + j * t_dim1] < 0.) {
 | |
| 	    if (ilschr) {
 | |
| 		i__2 = j;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
 | |
| 		    t[jr + j * t_dim1] = -t[jr + j * t_dim1];
 | |
| /* L10: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		h__[j + j * h_dim1] = -h__[j + j * h_dim1];
 | |
| 		t[j + j * t_dim1] = -t[j + j * t_dim1];
 | |
| 	    }
 | |
| 	    if (ilz) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
 | |
| /* L20: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	alphar[j] = h__[j + j * h_dim1];
 | |
| 	alphai[j] = 0.;
 | |
| 	beta[j] = t[j + j * t_dim1];
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     If IHI < ILO, skip QZ steps */
 | |
| 
 | |
|     if (*ihi < *ilo) {
 | |
| 	goto L380;
 | |
|     }
 | |
| 
 | |
| /*     MAIN QZ ITERATION LOOP */
 | |
| 
 | |
| /*     Initialize dynamic indices */
 | |
| 
 | |
| /*     Eigenvalues ILAST+1:N have been found. */
 | |
| /*        Column operations modify rows IFRSTM:whatever. */
 | |
| /*        Row operations modify columns whatever:ILASTM. */
 | |
| 
 | |
| /*     If only eigenvalues are being computed, then */
 | |
| /*        IFRSTM is the row of the last splitting row above row ILAST; */
 | |
| /*        this is always at least ILO. */
 | |
| /*     IITER counts iterations since the last eigenvalue was found, */
 | |
| /*        to tell when to use an extraordinary shift. */
 | |
| /*     MAXIT is the maximum number of QZ sweeps allowed. */
 | |
| 
 | |
|     ilast = *ihi;
 | |
|     if (ilschr) {
 | |
| 	ifrstm = 1;
 | |
| 	ilastm = *n;
 | |
|     } else {
 | |
| 	ifrstm = *ilo;
 | |
| 	ilastm = *ihi;
 | |
|     }
 | |
|     iiter = 0;
 | |
|     eshift = 0.;
 | |
|     maxit = (*ihi - *ilo + 1) * 30;
 | |
| 
 | |
|     i__1 = maxit;
 | |
|     for (jiter = 1; jiter <= i__1; ++jiter) {
 | |
| 
 | |
| /*        Split the matrix if possible. */
 | |
| 
 | |
| /*        Two tests: */
 | |
| /*           1: H(j,j-1)=0  or  j=ILO */
 | |
| /*           2: T(j,j)=0 */
 | |
| 
 | |
| 	if (ilast == *ilo) {
 | |
| 
 | |
| /*           Special case: j=ILAST */
 | |
| 
 | |
| 	    goto L80;
 | |
| 	} else {
 | |
| 	    if ((d__1 = h__[ilast + (ilast - 1) * h_dim1], abs(d__1)) <= atol)
 | |
| 		     {
 | |
| 		h__[ilast + (ilast - 1) * h_dim1] = 0.;
 | |
| 		goto L80;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if ((d__1 = t[ilast + ilast * t_dim1], abs(d__1)) <= btol) {
 | |
| 	    t[ilast + ilast * t_dim1] = 0.;
 | |
| 	    goto L70;
 | |
| 	}
 | |
| 
 | |
| /*        General case: j<ILAST */
 | |
| 
 | |
| 	i__2 = *ilo;
 | |
| 	for (j = ilast - 1; j >= i__2; --j) {
 | |
| 
 | |
| /*           Test 1: for H(j,j-1)=0 or j=ILO */
 | |
| 
 | |
| 	    if (j == *ilo) {
 | |
| 		ilazro = TRUE_;
 | |
| 	    } else {
 | |
| 		if ((d__1 = h__[j + (j - 1) * h_dim1], abs(d__1)) <= atol) {
 | |
| 		    h__[j + (j - 1) * h_dim1] = 0.;
 | |
| 		    ilazro = TRUE_;
 | |
| 		} else {
 | |
| 		    ilazro = FALSE_;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Test 2: for T(j,j)=0 */
 | |
| 
 | |
| 	    if ((d__1 = t[j + j * t_dim1], abs(d__1)) < btol) {
 | |
| 		t[j + j * t_dim1] = 0.;
 | |
| 
 | |
| /*              Test 1a: Check for 2 consecutive small subdiagonals in A */
 | |
| 
 | |
| 		ilazr2 = FALSE_;
 | |
| 		if (! ilazro) {
 | |
| 		    temp = (d__1 = h__[j + (j - 1) * h_dim1], abs(d__1));
 | |
| 		    temp2 = (d__1 = h__[j + j * h_dim1], abs(d__1));
 | |
| 		    tempr = f2cmax(temp,temp2);
 | |
| 		    if (tempr < 1. && tempr != 0.) {
 | |
| 			temp /= tempr;
 | |
| 			temp2 /= tempr;
 | |
| 		    }
 | |
| 		    if (temp * (ascale * (d__1 = h__[j + 1 + j * h_dim1], abs(
 | |
| 			    d__1))) <= temp2 * (ascale * atol)) {
 | |
| 			ilazr2 = TRUE_;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              If both tests pass (1 & 2), i.e., the leading diagonal */
 | |
| /*              element of B in the block is zero, split a 1x1 block off */
 | |
| /*              at the top. (I.e., at the J-th row/column) The leading */
 | |
| /*              diagonal element of the remainder can also be zero, so */
 | |
| /*              this may have to be done repeatedly. */
 | |
| 
 | |
| 		if (ilazro || ilazr2) {
 | |
| 		    i__3 = ilast - 1;
 | |
| 		    for (jch = j; jch <= i__3; ++jch) {
 | |
| 			temp = h__[jch + jch * h_dim1];
 | |
| 			dlartg_(&temp, &h__[jch + 1 + jch * h_dim1], &c__, &s,
 | |
| 				 &h__[jch + jch * h_dim1]);
 | |
| 			h__[jch + 1 + jch * h_dim1] = 0.;
 | |
| 			i__4 = ilastm - jch;
 | |
| 			drot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
 | |
| 				h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__, 
 | |
| 				&s);
 | |
| 			i__4 = ilastm - jch;
 | |
| 			drot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
 | |
| 				jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
 | |
| 			if (ilq) {
 | |
| 			    drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
 | |
| 				     * q_dim1 + 1], &c__1, &c__, &s);
 | |
| 			}
 | |
| 			if (ilazr2) {
 | |
| 			    h__[jch + (jch - 1) * h_dim1] *= c__;
 | |
| 			}
 | |
| 			ilazr2 = FALSE_;
 | |
| 			if ((d__1 = t[jch + 1 + (jch + 1) * t_dim1], abs(d__1)
 | |
| 				) >= btol) {
 | |
| 			    if (jch + 1 >= ilast) {
 | |
| 				goto L80;
 | |
| 			    } else {
 | |
| 				ifirst = jch + 1;
 | |
| 				goto L110;
 | |
| 			    }
 | |
| 			}
 | |
| 			t[jch + 1 + (jch + 1) * t_dim1] = 0.;
 | |
| /* L40: */
 | |
| 		    }
 | |
| 		    goto L70;
 | |
| 		} else {
 | |
| 
 | |
| /*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
 | |
| /*                 Then process as in the case T(ILAST,ILAST)=0 */
 | |
| 
 | |
| 		    i__3 = ilast - 1;
 | |
| 		    for (jch = j; jch <= i__3; ++jch) {
 | |
| 			temp = t[jch + (jch + 1) * t_dim1];
 | |
| 			dlartg_(&temp, &t[jch + 1 + (jch + 1) * t_dim1], &c__,
 | |
| 				 &s, &t[jch + (jch + 1) * t_dim1]);
 | |
| 			t[jch + 1 + (jch + 1) * t_dim1] = 0.;
 | |
| 			if (jch < ilastm - 1) {
 | |
| 			    i__4 = ilastm - jch - 1;
 | |
| 			    drot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
 | |
| 				    t[jch + 1 + (jch + 2) * t_dim1], ldt, &
 | |
| 				    c__, &s);
 | |
| 			}
 | |
| 			i__4 = ilastm - jch + 2;
 | |
| 			drot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
 | |
| 				h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__, 
 | |
| 				&s);
 | |
| 			if (ilq) {
 | |
| 			    drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
 | |
| 				     * q_dim1 + 1], &c__1, &c__, &s);
 | |
| 			}
 | |
| 			temp = h__[jch + 1 + jch * h_dim1];
 | |
| 			dlartg_(&temp, &h__[jch + 1 + (jch - 1) * h_dim1], &
 | |
| 				c__, &s, &h__[jch + 1 + jch * h_dim1]);
 | |
| 			h__[jch + 1 + (jch - 1) * h_dim1] = 0.;
 | |
| 			i__4 = jch + 1 - ifrstm;
 | |
| 			drot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
 | |
| 				ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
 | |
| 				;
 | |
| 			i__4 = jch - ifrstm;
 | |
| 			drot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
 | |
| 				ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
 | |
| 				;
 | |
| 			if (ilz) {
 | |
| 			    drot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch 
 | |
| 				    - 1) * z_dim1 + 1], &c__1, &c__, &s);
 | |
| 			}
 | |
| /* L50: */
 | |
| 		    }
 | |
| 		    goto L70;
 | |
| 		}
 | |
| 	    } else if (ilazro) {
 | |
| 
 | |
| /*              Only test 1 passed -- work on J:ILAST */
 | |
| 
 | |
| 		ifirst = j;
 | |
| 		goto L110;
 | |
| 	    }
 | |
| 
 | |
| /*           Neither test passed -- try next J */
 | |
| 
 | |
| /* L60: */
 | |
| 	}
 | |
| 
 | |
| /*        (Drop-through is "impossible") */
 | |
| 
 | |
| 	*info = *n + 1;
 | |
| 	goto L420;
 | |
| 
 | |
| /*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
 | |
| /*        1x1 block. */
 | |
| 
 | |
| L70:
 | |
| 	temp = h__[ilast + ilast * h_dim1];
 | |
| 	dlartg_(&temp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
 | |
| 		ilast + ilast * h_dim1]);
 | |
| 	h__[ilast + (ilast - 1) * h_dim1] = 0.;
 | |
| 	i__2 = ilast - ifrstm;
 | |
| 	drot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
 | |
| 		ilast - 1) * h_dim1], &c__1, &c__, &s);
 | |
| 	i__2 = ilast - ifrstm;
 | |
| 	drot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast - 
 | |
| 		1) * t_dim1], &c__1, &c__, &s);
 | |
| 	if (ilz) {
 | |
| 	    drot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) * 
 | |
| 		    z_dim1 + 1], &c__1, &c__, &s);
 | |
| 	}
 | |
| 
 | |
| /*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, */
 | |
| /*                              and BETA */
 | |
| 
 | |
| L80:
 | |
| 	if (t[ilast + ilast * t_dim1] < 0.) {
 | |
| 	    if (ilschr) {
 | |
| 		i__2 = ilast;
 | |
| 		for (j = ifrstm; j <= i__2; ++j) {
 | |
| 		    h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
 | |
| 		    t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
 | |
| /* L90: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		h__[ilast + ilast * h_dim1] = -h__[ilast + ilast * h_dim1];
 | |
| 		t[ilast + ilast * t_dim1] = -t[ilast + ilast * t_dim1];
 | |
| 	    }
 | |
| 	    if (ilz) {
 | |
| 		i__2 = *n;
 | |
| 		for (j = 1; j <= i__2; ++j) {
 | |
| 		    z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
 | |
| /* L100: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	alphar[ilast] = h__[ilast + ilast * h_dim1];
 | |
| 	alphai[ilast] = 0.;
 | |
| 	beta[ilast] = t[ilast + ilast * t_dim1];
 | |
| 
 | |
| /*        Go to next block -- exit if finished. */
 | |
| 
 | |
| 	--ilast;
 | |
| 	if (ilast < *ilo) {
 | |
| 	    goto L380;
 | |
| 	}
 | |
| 
 | |
| /*        Reset counters */
 | |
| 
 | |
| 	iiter = 0;
 | |
| 	eshift = 0.;
 | |
| 	if (! ilschr) {
 | |
| 	    ilastm = ilast;
 | |
| 	    if (ifrstm > ilast) {
 | |
| 		ifrstm = *ilo;
 | |
| 	    }
 | |
| 	}
 | |
| 	goto L350;
 | |
| 
 | |
| /*        QZ step */
 | |
| 
 | |
| /*        This iteration only involves rows/columns IFIRST:ILAST. We */
 | |
| /*        assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
 | |
| 
 | |
| L110:
 | |
| 	++iiter;
 | |
| 	if (! ilschr) {
 | |
| 	    ifrstm = ifirst;
 | |
| 	}
 | |
| 
 | |
| /*        Compute single shifts. */
 | |
| 
 | |
| /*        At this point, IFIRST < ILAST, and the diagonal elements of */
 | |
| /*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
 | |
| /*        magnitude) */
 | |
| 
 | |
| 	if (iiter / 10 * 10 == iiter) {
 | |
| 
 | |
| /*           Exceptional shift.  Chosen for no particularly good reason. */
 | |
| /*           (Single shift only.) */
 | |
| 
 | |
| 	    if ((doublereal) maxit * safmin * (d__1 = h__[ilast + (ilast - 1) 
 | |
| 		    * h_dim1], abs(d__1)) < (d__2 = t[ilast - 1 + (ilast - 1) 
 | |
| 		    * t_dim1], abs(d__2))) {
 | |
| 		eshift = h__[ilast + (ilast - 1) * h_dim1] / t[ilast - 1 + (
 | |
| 			ilast - 1) * t_dim1];
 | |
| 	    } else {
 | |
| 		eshift += 1. / (safmin * (doublereal) maxit);
 | |
| 	    }
 | |
| 	    s1 = 1.;
 | |
| 	    wr = eshift;
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Shifts based on the generalized eigenvalues of the */
 | |
| /*           bottom-right 2x2 block of A and B. The first eigenvalue */
 | |
| /*           returned by DLAG2 is the Wilkinson shift (AEP p.512), */
 | |
| 
 | |
| 	    d__1 = safmin * 100.;
 | |
| 	    dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1 
 | |
| 		    + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &s2, &wr, &wr2, 
 | |
| 		    &wi);
 | |
| 
 | |
| 	    if ((d__1 = wr / s1 * t[ilast + ilast * t_dim1] - h__[ilast + 
 | |
| 		    ilast * h_dim1], abs(d__1)) > (d__2 = wr2 / s2 * t[ilast 
 | |
| 		    + ilast * t_dim1] - h__[ilast + ilast * h_dim1], abs(d__2)
 | |
| 		    )) {
 | |
| 		temp = wr;
 | |
| 		wr = wr2;
 | |
| 		wr2 = temp;
 | |
| 		temp = s1;
 | |
| 		s1 = s2;
 | |
| 		s2 = temp;
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| /* Computing MAX */
 | |
| 	    d__3 = 1., d__4 = abs(wr), d__3 = f2cmax(d__3,d__4), d__4 = abs(wi);
 | |
| 	    d__1 = s1, d__2 = safmin * f2cmax(d__3,d__4);
 | |
| 	    temp = f2cmax(d__1,d__2);
 | |
| 	    if (wi != 0.) {
 | |
| 		goto L200;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Fiddle with shift to avoid overflow */
 | |
| 
 | |
| 	temp = f2cmin(ascale,1.) * (safmax * .5);
 | |
| 	if (s1 > temp) {
 | |
| 	    scale = temp / s1;
 | |
| 	} else {
 | |
| 	    scale = 1.;
 | |
| 	}
 | |
| 
 | |
| 	temp = f2cmin(bscale,1.) * (safmax * .5);
 | |
| 	if (abs(wr) > temp) {
 | |
| /* Computing MIN */
 | |
| 	    d__1 = scale, d__2 = temp / abs(wr);
 | |
| 	    scale = f2cmin(d__1,d__2);
 | |
| 	}
 | |
| 	s1 = scale * s1;
 | |
| 	wr = scale * wr;
 | |
| 
 | |
| /*        Now check for two consecutive small subdiagonals. */
 | |
| 
 | |
| 	i__2 = ifirst + 1;
 | |
| 	for (j = ilast - 1; j >= i__2; --j) {
 | |
| 	    istart = j;
 | |
| 	    temp = (d__1 = s1 * h__[j + (j - 1) * h_dim1], abs(d__1));
 | |
| 	    temp2 = (d__1 = s1 * h__[j + j * h_dim1] - wr * t[j + j * t_dim1],
 | |
| 		     abs(d__1));
 | |
| 	    tempr = f2cmax(temp,temp2);
 | |
| 	    if (tempr < 1. && tempr != 0.) {
 | |
| 		temp /= tempr;
 | |
| 		temp2 /= tempr;
 | |
| 	    }
 | |
| 	    if ((d__1 = ascale * h__[j + 1 + j * h_dim1] * temp, abs(d__1)) <=
 | |
| 		     ascale * atol * temp2) {
 | |
| 		goto L130;
 | |
| 	    }
 | |
| /* L120: */
 | |
| 	}
 | |
| 
 | |
| 	istart = ifirst;
 | |
| L130:
 | |
| 
 | |
| /*        Do an implicit single-shift QZ sweep. */
 | |
| 
 | |
| /*        Initial Q */
 | |
| 
 | |
| 	temp = s1 * h__[istart + istart * h_dim1] - wr * t[istart + istart * 
 | |
| 		t_dim1];
 | |
| 	temp2 = s1 * h__[istart + 1 + istart * h_dim1];
 | |
| 	dlartg_(&temp, &temp2, &c__, &s, &tempr);
 | |
| 
 | |
| /*        Sweep */
 | |
| 
 | |
| 	i__2 = ilast - 1;
 | |
| 	for (j = istart; j <= i__2; ++j) {
 | |
| 	    if (j > istart) {
 | |
| 		temp = h__[j + (j - 1) * h_dim1];
 | |
| 		dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[
 | |
| 			j + (j - 1) * h_dim1]);
 | |
| 		h__[j + 1 + (j - 1) * h_dim1] = 0.;
 | |
| 	    }
 | |
| 
 | |
| 	    i__3 = ilastm;
 | |
| 	    for (jc = j; jc <= i__3; ++jc) {
 | |
| 		temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc * 
 | |
| 			h_dim1];
 | |
| 		h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ * 
 | |
| 			h__[j + 1 + jc * h_dim1];
 | |
| 		h__[j + jc * h_dim1] = temp;
 | |
| 		temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
 | |
| 		t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j 
 | |
| 			+ 1 + jc * t_dim1];
 | |
| 		t[j + jc * t_dim1] = temp2;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	    if (ilq) {
 | |
| 		i__3 = *n;
 | |
| 		for (jr = 1; jr <= i__3; ++jr) {
 | |
| 		    temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) * 
 | |
| 			    q_dim1];
 | |
| 		    q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
 | |
| 			     q[jr + (j + 1) * q_dim1];
 | |
| 		    q[jr + j * q_dim1] = temp;
 | |
| /* L150: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    temp = t[j + 1 + (j + 1) * t_dim1];
 | |
| 	    dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j + 
 | |
| 		    1) * t_dim1]);
 | |
| 	    t[j + 1 + j * t_dim1] = 0.;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__4 = j + 2;
 | |
| 	    i__3 = f2cmin(i__4,ilast);
 | |
| 	    for (jr = ifrstm; jr <= i__3; ++jr) {
 | |
| 		temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j * 
 | |
| 			h_dim1];
 | |
| 		h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
 | |
| 			 h__[jr + j * h_dim1];
 | |
| 		h__[jr + (j + 1) * h_dim1] = temp;
 | |
| /* L160: */
 | |
| 	    }
 | |
| 	    i__3 = j;
 | |
| 	    for (jr = ifrstm; jr <= i__3; ++jr) {
 | |
| 		temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
 | |
| 			;
 | |
| 		t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
 | |
| 			jr + j * t_dim1];
 | |
| 		t[jr + (j + 1) * t_dim1] = temp;
 | |
| /* L170: */
 | |
| 	    }
 | |
| 	    if (ilz) {
 | |
| 		i__3 = *n;
 | |
| 		for (jr = 1; jr <= i__3; ++jr) {
 | |
| 		    temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
 | |
| 			     z_dim1];
 | |
| 		    z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] + 
 | |
| 			    c__ * z__[jr + j * z_dim1];
 | |
| 		    z__[jr + (j + 1) * z_dim1] = temp;
 | |
| /* L180: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L190: */
 | |
| 	}
 | |
| 
 | |
| 	goto L350;
 | |
| 
 | |
| /*        Use Francis double-shift */
 | |
| 
 | |
| /*        Note: the Francis double-shift should work with real shifts, */
 | |
| /*              but only if the block is at least 3x3. */
 | |
| /*              This code may break if this point is reached with */
 | |
| /*              a 2x2 block with real eigenvalues. */
 | |
| 
 | |
| L200:
 | |
| 	if (ifirst + 1 == ilast) {
 | |
| 
 | |
| /*           Special case -- 2x2 block with complex eigenvectors */
 | |
| 
 | |
| /*           Step 1: Standardize, that is, rotate so that */
 | |
| 
 | |
| /*                       ( B11  0  ) */
 | |
| /*                   B = (         )  with B11 non-negative. */
 | |
| /*                       (  0  B22 ) */
 | |
| 
 | |
| 	    dlasv2_(&t[ilast - 1 + (ilast - 1) * t_dim1], &t[ilast - 1 + 
 | |
| 		    ilast * t_dim1], &t[ilast + ilast * t_dim1], &b22, &b11, &
 | |
| 		    sr, &cr, &sl, &cl);
 | |
| 
 | |
| 	    if (b11 < 0.) {
 | |
| 		cr = -cr;
 | |
| 		sr = -sr;
 | |
| 		b11 = -b11;
 | |
| 		b22 = -b22;
 | |
| 	    }
 | |
| 
 | |
| 	    i__2 = ilastm + 1 - ifirst;
 | |
| 	    drot_(&i__2, &h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &h__[
 | |
| 		    ilast + (ilast - 1) * h_dim1], ldh, &cl, &sl);
 | |
| 	    i__2 = ilast + 1 - ifrstm;
 | |
| 	    drot_(&i__2, &h__[ifrstm + (ilast - 1) * h_dim1], &c__1, &h__[
 | |
| 		    ifrstm + ilast * h_dim1], &c__1, &cr, &sr);
 | |
| 
 | |
| 	    if (ilast < ilastm) {
 | |
| 		i__2 = ilastm - ilast;
 | |
| 		drot_(&i__2, &t[ilast - 1 + (ilast + 1) * t_dim1], ldt, &t[
 | |
| 			ilast + (ilast + 1) * t_dim1], ldt, &cl, &sl);
 | |
| 	    }
 | |
| 	    if (ifrstm < ilast - 1) {
 | |
| 		i__2 = ifirst - ifrstm;
 | |
| 		drot_(&i__2, &t[ifrstm + (ilast - 1) * t_dim1], &c__1, &t[
 | |
| 			ifrstm + ilast * t_dim1], &c__1, &cr, &sr);
 | |
| 	    }
 | |
| 
 | |
| 	    if (ilq) {
 | |
| 		drot_(n, &q[(ilast - 1) * q_dim1 + 1], &c__1, &q[ilast * 
 | |
| 			q_dim1 + 1], &c__1, &cl, &sl);
 | |
| 	    }
 | |
| 	    if (ilz) {
 | |
| 		drot_(n, &z__[(ilast - 1) * z_dim1 + 1], &c__1, &z__[ilast * 
 | |
| 			z_dim1 + 1], &c__1, &cr, &sr);
 | |
| 	    }
 | |
| 
 | |
| 	    t[ilast - 1 + (ilast - 1) * t_dim1] = b11;
 | |
| 	    t[ilast - 1 + ilast * t_dim1] = 0.;
 | |
| 	    t[ilast + (ilast - 1) * t_dim1] = 0.;
 | |
| 	    t[ilast + ilast * t_dim1] = b22;
 | |
| 
 | |
| /*           If B22 is negative, negate column ILAST */
 | |
| 
 | |
| 	    if (b22 < 0.) {
 | |
| 		i__2 = ilast;
 | |
| 		for (j = ifrstm; j <= i__2; ++j) {
 | |
| 		    h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
 | |
| 		    t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
 | |
| /* L210: */
 | |
| 		}
 | |
| 
 | |
| 		if (ilz) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = 1; j <= i__2; ++j) {
 | |
| 			z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
 | |
| /* L220: */
 | |
| 		    }
 | |
| 		}
 | |
| 		b22 = -b22;
 | |
| 	    }
 | |
| 
 | |
| /*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) */
 | |
| 
 | |
| /*           Recompute shift */
 | |
| 
 | |
| 	    d__1 = safmin * 100.;
 | |
| 	    dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1 
 | |
| 		    + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &temp, &wr, &
 | |
| 		    temp2, &wi);
 | |
| 
 | |
| /*           If standardization has perturbed the shift onto real line, */
 | |
| /*           do another (real single-shift) QR step. */
 | |
| 
 | |
| 	    if (wi == 0.) {
 | |
| 		goto L350;
 | |
| 	    }
 | |
| 	    s1inv = 1. / s1;
 | |
| 
 | |
| /*           Do EISPACK (QZVAL) computation of alpha and beta */
 | |
| 
 | |
| 	    a11 = h__[ilast - 1 + (ilast - 1) * h_dim1];
 | |
| 	    a21 = h__[ilast + (ilast - 1) * h_dim1];
 | |
| 	    a12 = h__[ilast - 1 + ilast * h_dim1];
 | |
| 	    a22 = h__[ilast + ilast * h_dim1];
 | |
| 
 | |
| /*           Compute complex Givens rotation on right */
 | |
| /*           (Assume some element of C = (sA - wB) > unfl ) */
 | |
| /*                            __ */
 | |
| /*           (sA - wB) ( CZ   -SZ ) */
 | |
| /*                     ( SZ    CZ ) */
 | |
| 
 | |
| 	    c11r = s1 * a11 - wr * b11;
 | |
| 	    c11i = -wi * b11;
 | |
| 	    c12 = s1 * a12;
 | |
| 	    c21 = s1 * a21;
 | |
| 	    c22r = s1 * a22 - wr * b22;
 | |
| 	    c22i = -wi * b22;
 | |
| 
 | |
| 	    if (abs(c11r) + abs(c11i) + abs(c12) > abs(c21) + abs(c22r) + abs(
 | |
| 		    c22i)) {
 | |
| 		t1 = dlapy3_(&c12, &c11r, &c11i);
 | |
| 		cz = c12 / t1;
 | |
| 		szr = -c11r / t1;
 | |
| 		szi = -c11i / t1;
 | |
| 	    } else {
 | |
| 		cz = dlapy2_(&c22r, &c22i);
 | |
| 		if (cz <= safmin) {
 | |
| 		    cz = 0.;
 | |
| 		    szr = 1.;
 | |
| 		    szi = 0.;
 | |
| 		} else {
 | |
| 		    tempr = c22r / cz;
 | |
| 		    tempi = c22i / cz;
 | |
| 		    t1 = dlapy2_(&cz, &c21);
 | |
| 		    cz /= t1;
 | |
| 		    szr = -c21 * tempr / t1;
 | |
| 		    szi = c21 * tempi / t1;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Compute Givens rotation on left */
 | |
| 
 | |
| /*           (  CQ   SQ ) */
 | |
| /*           (  __      )  A or B */
 | |
| /*           ( -SQ   CQ ) */
 | |
| 
 | |
| 	    an = abs(a11) + abs(a12) + abs(a21) + abs(a22);
 | |
| 	    bn = abs(b11) + abs(b22);
 | |
| 	    wabs = abs(wr) + abs(wi);
 | |
| 	    if (s1 * an > wabs * bn) {
 | |
| 		cq = cz * b11;
 | |
| 		sqr = szr * b22;
 | |
| 		sqi = -szi * b22;
 | |
| 	    } else {
 | |
| 		a1r = cz * a11 + szr * a12;
 | |
| 		a1i = szi * a12;
 | |
| 		a2r = cz * a21 + szr * a22;
 | |
| 		a2i = szi * a22;
 | |
| 		cq = dlapy2_(&a1r, &a1i);
 | |
| 		if (cq <= safmin) {
 | |
| 		    cq = 0.;
 | |
| 		    sqr = 1.;
 | |
| 		    sqi = 0.;
 | |
| 		} else {
 | |
| 		    tempr = a1r / cq;
 | |
| 		    tempi = a1i / cq;
 | |
| 		    sqr = tempr * a2r + tempi * a2i;
 | |
| 		    sqi = tempi * a2r - tempr * a2i;
 | |
| 		}
 | |
| 	    }
 | |
| 	    t1 = dlapy3_(&cq, &sqr, &sqi);
 | |
| 	    cq /= t1;
 | |
| 	    sqr /= t1;
 | |
| 	    sqi /= t1;
 | |
| 
 | |
| /*           Compute diagonal elements of QBZ */
 | |
| 
 | |
| 	    tempr = sqr * szr - sqi * szi;
 | |
| 	    tempi = sqr * szi + sqi * szr;
 | |
| 	    b1r = cq * cz * b11 + tempr * b22;
 | |
| 	    b1i = tempi * b22;
 | |
| 	    b1a = dlapy2_(&b1r, &b1i);
 | |
| 	    b2r = cq * cz * b22 + tempr * b11;
 | |
| 	    b2i = -tempi * b11;
 | |
| 	    b2a = dlapy2_(&b2r, &b2i);
 | |
| 
 | |
| /*           Normalize so beta > 0, and Im( alpha1 ) > 0 */
 | |
| 
 | |
| 	    beta[ilast - 1] = b1a;
 | |
| 	    beta[ilast] = b2a;
 | |
| 	    alphar[ilast - 1] = wr * b1a * s1inv;
 | |
| 	    alphai[ilast - 1] = wi * b1a * s1inv;
 | |
| 	    alphar[ilast] = wr * b2a * s1inv;
 | |
| 	    alphai[ilast] = -(wi * b2a) * s1inv;
 | |
| 
 | |
| /*           Step 3: Go to next block -- exit if finished. */
 | |
| 
 | |
| 	    ilast = ifirst - 1;
 | |
| 	    if (ilast < *ilo) {
 | |
| 		goto L380;
 | |
| 	    }
 | |
| 
 | |
| /*           Reset counters */
 | |
| 
 | |
| 	    iiter = 0;
 | |
| 	    eshift = 0.;
 | |
| 	    if (! ilschr) {
 | |
| 		ilastm = ilast;
 | |
| 		if (ifrstm > ilast) {
 | |
| 		    ifrstm = *ilo;
 | |
| 		}
 | |
| 	    }
 | |
| 	    goto L350;
 | |
| 	} else {
 | |
| 
 | |
| /*           Usual case: 3x3 or larger block, using Francis implicit */
 | |
| /*                       double-shift */
 | |
| 
 | |
| /*                                    2 */
 | |
| /*           Eigenvalue equation is  w  - c w + d = 0, */
 | |
| 
 | |
| /*                                         -1 2        -1 */
 | |
| /*           so compute 1st column of  (A B  )  - c A B   + d */
 | |
| /*           using the formula in QZIT (from EISPACK) */
 | |
| 
 | |
| /*           We assume that the block is at least 3x3 */
 | |
| 
 | |
| 	    ad11 = ascale * h__[ilast - 1 + (ilast - 1) * h_dim1] / (bscale * 
 | |
| 		    t[ilast - 1 + (ilast - 1) * t_dim1]);
 | |
| 	    ad21 = ascale * h__[ilast + (ilast - 1) * h_dim1] / (bscale * t[
 | |
| 		    ilast - 1 + (ilast - 1) * t_dim1]);
 | |
| 	    ad12 = ascale * h__[ilast - 1 + ilast * h_dim1] / (bscale * t[
 | |
| 		    ilast + ilast * t_dim1]);
 | |
| 	    ad22 = ascale * h__[ilast + ilast * h_dim1] / (bscale * t[ilast + 
 | |
| 		    ilast * t_dim1]);
 | |
| 	    u12 = t[ilast - 1 + ilast * t_dim1] / t[ilast + ilast * t_dim1];
 | |
| 	    ad11l = ascale * h__[ifirst + ifirst * h_dim1] / (bscale * t[
 | |
| 		    ifirst + ifirst * t_dim1]);
 | |
| 	    ad21l = ascale * h__[ifirst + 1 + ifirst * h_dim1] / (bscale * t[
 | |
| 		    ifirst + ifirst * t_dim1]);
 | |
| 	    ad12l = ascale * h__[ifirst + (ifirst + 1) * h_dim1] / (bscale * 
 | |
| 		    t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 | |
| 	    ad22l = ascale * h__[ifirst + 1 + (ifirst + 1) * h_dim1] / (
 | |
| 		    bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 | |
| 	    ad32l = ascale * h__[ifirst + 2 + (ifirst + 1) * h_dim1] / (
 | |
| 		    bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 | |
| 	    u12l = t[ifirst + (ifirst + 1) * t_dim1] / t[ifirst + 1 + (ifirst 
 | |
| 		    + 1) * t_dim1];
 | |
| 
 | |
| 	    v[0] = (ad11 - ad11l) * (ad22 - ad11l) - ad12 * ad21 + ad21 * u12 
 | |
| 		    * ad11l + (ad12l - ad11l * u12l) * ad21l;
 | |
| 	    v[1] = (ad22l - ad11l - ad21l * u12l - (ad11 - ad11l) - (ad22 - 
 | |
| 		    ad11l) + ad21 * u12) * ad21l;
 | |
| 	    v[2] = ad32l * ad21l;
 | |
| 
 | |
| 	    istart = ifirst;
 | |
| 
 | |
| 	    dlarfg_(&c__3, v, &v[1], &c__1, &tau);
 | |
| 	    v[0] = 1.;
 | |
| 
 | |
| /*           Sweep */
 | |
| 
 | |
| 	    i__2 = ilast - 2;
 | |
| 	    for (j = istart; j <= i__2; ++j) {
 | |
| 
 | |
| /*              All but last elements: use 3x3 Householder transforms. */
 | |
| 
 | |
| /*              Zero (j-1)st column of A */
 | |
| 
 | |
| 		if (j > istart) {
 | |
| 		    v[0] = h__[j + (j - 1) * h_dim1];
 | |
| 		    v[1] = h__[j + 1 + (j - 1) * h_dim1];
 | |
| 		    v[2] = h__[j + 2 + (j - 1) * h_dim1];
 | |
| 
 | |
| 		    dlarfg_(&c__3, &h__[j + (j - 1) * h_dim1], &v[1], &c__1, &
 | |
| 			    tau);
 | |
| 		    v[0] = 1.;
 | |
| 		    h__[j + 1 + (j - 1) * h_dim1] = 0.;
 | |
| 		    h__[j + 2 + (j - 1) * h_dim1] = 0.;
 | |
| 		}
 | |
| 
 | |
| 		i__3 = ilastm;
 | |
| 		for (jc = j; jc <= i__3; ++jc) {
 | |
| 		    temp = tau * (h__[j + jc * h_dim1] + v[1] * h__[j + 1 + 
 | |
| 			    jc * h_dim1] + v[2] * h__[j + 2 + jc * h_dim1]);
 | |
| 		    h__[j + jc * h_dim1] -= temp;
 | |
| 		    h__[j + 1 + jc * h_dim1] -= temp * v[1];
 | |
| 		    h__[j + 2 + jc * h_dim1] -= temp * v[2];
 | |
| 		    temp2 = tau * (t[j + jc * t_dim1] + v[1] * t[j + 1 + jc * 
 | |
| 			    t_dim1] + v[2] * t[j + 2 + jc * t_dim1]);
 | |
| 		    t[j + jc * t_dim1] -= temp2;
 | |
| 		    t[j + 1 + jc * t_dim1] -= temp2 * v[1];
 | |
| 		    t[j + 2 + jc * t_dim1] -= temp2 * v[2];
 | |
| /* L230: */
 | |
| 		}
 | |
| 		if (ilq) {
 | |
| 		    i__3 = *n;
 | |
| 		    for (jr = 1; jr <= i__3; ++jr) {
 | |
| 			temp = tau * (q[jr + j * q_dim1] + v[1] * q[jr + (j + 
 | |
| 				1) * q_dim1] + v[2] * q[jr + (j + 2) * q_dim1]
 | |
| 				);
 | |
| 			q[jr + j * q_dim1] -= temp;
 | |
| 			q[jr + (j + 1) * q_dim1] -= temp * v[1];
 | |
| 			q[jr + (j + 2) * q_dim1] -= temp * v[2];
 | |
| /* L240: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Zero j-th column of B (see DLAGBC for details) */
 | |
| 
 | |
| /*              Swap rows to pivot */
 | |
| 
 | |
| 		ilpivt = FALSE_;
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = t[j + 1 + (j + 1) * t_dim1], abs(d__1)), d__4 =
 | |
| 			 (d__2 = t[j + 1 + (j + 2) * t_dim1], abs(d__2));
 | |
| 		temp = f2cmax(d__3,d__4);
 | |
| /* Computing MAX */
 | |
| 		d__3 = (d__1 = t[j + 2 + (j + 1) * t_dim1], abs(d__1)), d__4 =
 | |
| 			 (d__2 = t[j + 2 + (j + 2) * t_dim1], abs(d__2));
 | |
| 		temp2 = f2cmax(d__3,d__4);
 | |
| 		if (f2cmax(temp,temp2) < safmin) {
 | |
| 		    scale = 0.;
 | |
| 		    u1 = 1.;
 | |
| 		    u2 = 0.;
 | |
| 		    goto L250;
 | |
| 		} else if (temp >= temp2) {
 | |
| 		    w11 = t[j + 1 + (j + 1) * t_dim1];
 | |
| 		    w21 = t[j + 2 + (j + 1) * t_dim1];
 | |
| 		    w12 = t[j + 1 + (j + 2) * t_dim1];
 | |
| 		    w22 = t[j + 2 + (j + 2) * t_dim1];
 | |
| 		    u1 = t[j + 1 + j * t_dim1];
 | |
| 		    u2 = t[j + 2 + j * t_dim1];
 | |
| 		} else {
 | |
| 		    w21 = t[j + 1 + (j + 1) * t_dim1];
 | |
| 		    w11 = t[j + 2 + (j + 1) * t_dim1];
 | |
| 		    w22 = t[j + 1 + (j + 2) * t_dim1];
 | |
| 		    w12 = t[j + 2 + (j + 2) * t_dim1];
 | |
| 		    u2 = t[j + 1 + j * t_dim1];
 | |
| 		    u1 = t[j + 2 + j * t_dim1];
 | |
| 		}
 | |
| 
 | |
| /*              Swap columns if nec. */
 | |
| 
 | |
| 		if (abs(w12) > abs(w11)) {
 | |
| 		    ilpivt = TRUE_;
 | |
| 		    temp = w12;
 | |
| 		    temp2 = w22;
 | |
| 		    w12 = w11;
 | |
| 		    w22 = w21;
 | |
| 		    w11 = temp;
 | |
| 		    w21 = temp2;
 | |
| 		}
 | |
| 
 | |
| /*              LU-factor */
 | |
| 
 | |
| 		temp = w21 / w11;
 | |
| 		u2 -= temp * u1;
 | |
| 		w22 -= temp * w12;
 | |
| 		w21 = 0.;
 | |
| 
 | |
| /*              Compute SCALE */
 | |
| 
 | |
| 		scale = 1.;
 | |
| 		if (abs(w22) < safmin) {
 | |
| 		    scale = 0.;
 | |
| 		    u2 = 1.;
 | |
| 		    u1 = -w12 / w11;
 | |
| 		    goto L250;
 | |
| 		}
 | |
| 		if (abs(w22) < abs(u2)) {
 | |
| 		    scale = (d__1 = w22 / u2, abs(d__1));
 | |
| 		}
 | |
| 		if (abs(w11) < abs(u1)) {
 | |
| /* Computing MIN */
 | |
| 		    d__2 = scale, d__3 = (d__1 = w11 / u1, abs(d__1));
 | |
| 		    scale = f2cmin(d__2,d__3);
 | |
| 		}
 | |
| 
 | |
| /*              Solve */
 | |
| 
 | |
| 		u2 = scale * u2 / w22;
 | |
| 		u1 = (scale * u1 - w12 * u2) / w11;
 | |
| 
 | |
| L250:
 | |
| 		if (ilpivt) {
 | |
| 		    temp = u2;
 | |
| 		    u2 = u1;
 | |
| 		    u1 = temp;
 | |
| 		}
 | |
| 
 | |
| /*              Compute Householder Vector */
 | |
| 
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = scale;
 | |
| /* Computing 2nd power */
 | |
| 		d__2 = u1;
 | |
| /* Computing 2nd power */
 | |
| 		d__3 = u2;
 | |
| 		t1 = sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
 | |
| 		tau = scale / t1 + 1.;
 | |
| 		vs = -1. / (scale + t1);
 | |
| 		v[0] = 1.;
 | |
| 		v[1] = vs * u1;
 | |
| 		v[2] = vs * u2;
 | |
| 
 | |
| /*              Apply transformations from the right. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = j + 3;
 | |
| 		i__3 = f2cmin(i__4,ilast);
 | |
| 		for (jr = ifrstm; jr <= i__3; ++jr) {
 | |
| 		    temp = tau * (h__[jr + j * h_dim1] + v[1] * h__[jr + (j + 
 | |
| 			    1) * h_dim1] + v[2] * h__[jr + (j + 2) * h_dim1]);
 | |
| 		    h__[jr + j * h_dim1] -= temp;
 | |
| 		    h__[jr + (j + 1) * h_dim1] -= temp * v[1];
 | |
| 		    h__[jr + (j + 2) * h_dim1] -= temp * v[2];
 | |
| /* L260: */
 | |
| 		}
 | |
| 		i__3 = j + 2;
 | |
| 		for (jr = ifrstm; jr <= i__3; ++jr) {
 | |
| 		    temp = tau * (t[jr + j * t_dim1] + v[1] * t[jr + (j + 1) *
 | |
| 			     t_dim1] + v[2] * t[jr + (j + 2) * t_dim1]);
 | |
| 		    t[jr + j * t_dim1] -= temp;
 | |
| 		    t[jr + (j + 1) * t_dim1] -= temp * v[1];
 | |
| 		    t[jr + (j + 2) * t_dim1] -= temp * v[2];
 | |
| /* L270: */
 | |
| 		}
 | |
| 		if (ilz) {
 | |
| 		    i__3 = *n;
 | |
| 		    for (jr = 1; jr <= i__3; ++jr) {
 | |
| 			temp = tau * (z__[jr + j * z_dim1] + v[1] * z__[jr + (
 | |
| 				j + 1) * z_dim1] + v[2] * z__[jr + (j + 2) * 
 | |
| 				z_dim1]);
 | |
| 			z__[jr + j * z_dim1] -= temp;
 | |
| 			z__[jr + (j + 1) * z_dim1] -= temp * v[1];
 | |
| 			z__[jr + (j + 2) * z_dim1] -= temp * v[2];
 | |
| /* L280: */
 | |
| 		    }
 | |
| 		}
 | |
| 		t[j + 1 + j * t_dim1] = 0.;
 | |
| 		t[j + 2 + j * t_dim1] = 0.;
 | |
| /* L290: */
 | |
| 	    }
 | |
| 
 | |
| /*           Last elements: Use Givens rotations */
 | |
| 
 | |
| /*           Rotations from the left */
 | |
| 
 | |
| 	    j = ilast - 1;
 | |
| 	    temp = h__[j + (j - 1) * h_dim1];
 | |
| 	    dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[j + 
 | |
| 		    (j - 1) * h_dim1]);
 | |
| 	    h__[j + 1 + (j - 1) * h_dim1] = 0.;
 | |
| 
 | |
| 	    i__2 = ilastm;
 | |
| 	    for (jc = j; jc <= i__2; ++jc) {
 | |
| 		temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc * 
 | |
| 			h_dim1];
 | |
| 		h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ * 
 | |
| 			h__[j + 1 + jc * h_dim1];
 | |
| 		h__[j + jc * h_dim1] = temp;
 | |
| 		temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
 | |
| 		t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j 
 | |
| 			+ 1 + jc * t_dim1];
 | |
| 		t[j + jc * t_dim1] = temp2;
 | |
| /* L300: */
 | |
| 	    }
 | |
| 	    if (ilq) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) * 
 | |
| 			    q_dim1];
 | |
| 		    q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
 | |
| 			     q[jr + (j + 1) * q_dim1];
 | |
| 		    q[jr + j * q_dim1] = temp;
 | |
| /* L310: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Rotations from the right. */
 | |
| 
 | |
| 	    temp = t[j + 1 + (j + 1) * t_dim1];
 | |
| 	    dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j + 
 | |
| 		    1) * t_dim1]);
 | |
| 	    t[j + 1 + j * t_dim1] = 0.;
 | |
| 
 | |
| 	    i__2 = ilast;
 | |
| 	    for (jr = ifrstm; jr <= i__2; ++jr) {
 | |
| 		temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j * 
 | |
| 			h_dim1];
 | |
| 		h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
 | |
| 			 h__[jr + j * h_dim1];
 | |
| 		h__[jr + (j + 1) * h_dim1] = temp;
 | |
| /* L320: */
 | |
| 	    }
 | |
| 	    i__2 = ilast - 1;
 | |
| 	    for (jr = ifrstm; jr <= i__2; ++jr) {
 | |
| 		temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
 | |
| 			;
 | |
| 		t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
 | |
| 			jr + j * t_dim1];
 | |
| 		t[jr + (j + 1) * t_dim1] = temp;
 | |
| /* L330: */
 | |
| 	    }
 | |
| 	    if (ilz) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
 | |
| 			     z_dim1];
 | |
| 		    z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] + 
 | |
| 			    c__ * z__[jr + j * z_dim1];
 | |
| 		    z__[jr + (j + 1) * z_dim1] = temp;
 | |
| /* L340: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           End of Double-Shift code */
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	goto L350;
 | |
| 
 | |
| /*        End of iteration loop */
 | |
| 
 | |
| L350:
 | |
| /* L360: */
 | |
| 	;
 | |
|     }
 | |
| 
 | |
| /*     Drop-through = non-convergence */
 | |
| 
 | |
|     *info = ilast;
 | |
|     goto L420;
 | |
| 
 | |
| /*     Successful completion of all QZ steps */
 | |
| 
 | |
| L380:
 | |
| 
 | |
| /*     Set Eigenvalues 1:ILO-1 */
 | |
| 
 | |
|     i__1 = *ilo - 1;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	if (t[j + j * t_dim1] < 0.) {
 | |
| 	    if (ilschr) {
 | |
| 		i__2 = j;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
 | |
| 		    t[jr + j * t_dim1] = -t[jr + j * t_dim1];
 | |
| /* L390: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		h__[j + j * h_dim1] = -h__[j + j * h_dim1];
 | |
| 		t[j + j * t_dim1] = -t[j + j * t_dim1];
 | |
| 	    }
 | |
| 	    if (ilz) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
 | |
| /* L400: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	alphar[j] = h__[j + j * h_dim1];
 | |
| 	alphai[j] = 0.;
 | |
| 	beta[j] = t[j + j * t_dim1];
 | |
| /* L410: */
 | |
|     }
 | |
| 
 | |
| /*     Normal Termination */
 | |
| 
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Exit (other than argument error) -- return optimal workspace size */
 | |
| 
 | |
| L420:
 | |
|     work[1] = (doublereal) (*n);
 | |
|     return;
 | |
| 
 | |
| /*     End of DHGEQZ */
 | |
| 
 | |
| } /* dhgeqz_ */
 | |
| 
 |