1726 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1726 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static doublereal c_b42 = 1.;
 | |
| 
 | |
| /* > \brief \b DGSVJ0 pre-processor for the routine dgesvj. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DGSVJ0 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj0.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj0.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj0.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, */
 | |
| /*                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP */
 | |
| /*       DOUBLE PRECISION   EPS, SFMIN, TOL */
 | |
| /*       CHARACTER*1        JOBV */
 | |
| /*       DOUBLE PRECISION   A( LDA, * ), SVA( N ), D( N ), V( LDV, * ), */
 | |
| /*      $                   WORK( LWORK ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DGSVJ0 is called from DGESVJ as a pre-processor and that is its main */
 | |
| /* > purpose. It applies Jacobi rotations in the same way as DGESVJ does, but */
 | |
| /* > it does not check convergence (stopping criterion). Few tuning */
 | |
| /* > parameters (marked by [TP]) are available for the implementer. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBV */
 | |
| /* > \verbatim */
 | |
| /* >          JOBV is CHARACTER*1 */
 | |
| /* >          Specifies whether the output from this procedure is used */
 | |
| /* >          to compute the matrix V: */
 | |
| /* >          = 'V': the product of the Jacobi rotations is accumulated */
 | |
| /* >                 by postmulyiplying the N-by-N array V. */
 | |
| /* >                (See the description of V.) */
 | |
| /* >          = 'A': the product of the Jacobi rotations is accumulated */
 | |
| /* >                 by postmulyiplying the MV-by-N array V. */
 | |
| /* >                (See the descriptions of MV and V.) */
 | |
| /* >          = 'N': the Jacobi rotations are not accumulated. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the input matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the input matrix A. */
 | |
| /* >          M >= N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /* >          On entry, M-by-N matrix A, such that A*diag(D) represents */
 | |
| /* >          the input matrix. */
 | |
| /* >          On exit, */
 | |
| /* >          A_onexit * D_onexit represents the input matrix A*diag(D) */
 | |
| /* >          post-multiplied by a sequence of Jacobi rotations, where the */
 | |
| /* >          rotation threshold and the total number of sweeps are given in */
 | |
| /* >          TOL and NSWEEP, respectively. */
 | |
| /* >          (See the descriptions of D, TOL and NSWEEP.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The array D accumulates the scaling factors from the fast scaled */
 | |
| /* >          Jacobi rotations. */
 | |
| /* >          On entry, A*diag(D) represents the input matrix. */
 | |
| /* >          On exit, A_onexit*diag(D_onexit) represents the input matrix */
 | |
| /* >          post-multiplied by a sequence of Jacobi rotations, where the */
 | |
| /* >          rotation threshold and the total number of sweeps are given in */
 | |
| /* >          TOL and NSWEEP, respectively. */
 | |
| /* >          (See the descriptions of A, TOL and NSWEEP.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] SVA */
 | |
| /* > \verbatim */
 | |
| /* >          SVA is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On entry, SVA contains the Euclidean norms of the columns of */
 | |
| /* >          the matrix A*diag(D). */
 | |
| /* >          On exit, SVA contains the Euclidean norms of the columns of */
 | |
| /* >          the matrix onexit*diag(D_onexit). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MV */
 | |
| /* > \verbatim */
 | |
| /* >          MV is INTEGER */
 | |
| /* >          If JOBV = 'A', then MV rows of V are post-multipled by a */
 | |
| /* >                           sequence of Jacobi rotations. */
 | |
| /* >          If JOBV = 'N',   then MV is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is DOUBLE PRECISION array, dimension (LDV,N) */
 | |
| /* >          If JOBV = 'V' then N rows of V are post-multipled by a */
 | |
| /* >                           sequence of Jacobi rotations. */
 | |
| /* >          If JOBV = 'A' then MV rows of V are post-multipled by a */
 | |
| /* >                           sequence of Jacobi rotations. */
 | |
| /* >          If JOBV = 'N',   then V is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >          The leading dimension of the array V,  LDV >= 1. */
 | |
| /* >          If JOBV = 'V', LDV >= N. */
 | |
| /* >          If JOBV = 'A', LDV >= MV. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] EPS */
 | |
| /* > \verbatim */
 | |
| /* >          EPS is DOUBLE PRECISION */
 | |
| /* >          EPS = DLAMCH('Epsilon') */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SFMIN */
 | |
| /* > \verbatim */
 | |
| /* >          SFMIN is DOUBLE PRECISION */
 | |
| /* >          SFMIN = DLAMCH('Safe Minimum') */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TOL */
 | |
| /* > \verbatim */
 | |
| /* >          TOL is DOUBLE PRECISION */
 | |
| /* >          TOL is the threshold for Jacobi rotations. For a pair */
 | |
| /* >          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
 | |
| /* >          applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NSWEEP */
 | |
| /* > \verbatim */
 | |
| /* >          NSWEEP is INTEGER */
 | |
| /* >          NSWEEP is the number of sweeps of Jacobi rotations to be */
 | |
| /* >          performed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (LWORK) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          LWORK is the dimension of WORK. LWORK >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, then the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2017 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > DGSVJ0 is used just to enable DGESVJ to call a simplified version of */
 | |
| /* > itself to work on a submatrix of the original matrix. */
 | |
| /* > */
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
 | |
| /* > */
 | |
| /* > \par Bugs, Examples and Comments: */
 | |
| /*  ================================= */
 | |
| /* > */
 | |
| /* > Please report all bugs and send interesting test examples and comments to */
 | |
| /* > drmac@math.hr. Thank you. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dgsvj0_(char *jobv, integer *m, integer *n, doublereal *
 | |
| 	a, integer *lda, doublereal *d__, doublereal *sva, integer *mv, 
 | |
| 	doublereal *v, integer *ldv, doublereal *eps, doublereal *sfmin, 
 | |
| 	doublereal *tol, integer *nsweep, doublereal *work, integer *lwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5, 
 | |
| 	    i__6;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal aapp, aapq, aaqq;
 | |
|     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     integer ierr;
 | |
|     doublereal bigtheta;
 | |
|     integer pskipped;
 | |
|     doublereal aapp0;
 | |
|     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | |
|     doublereal temp1;
 | |
|     integer i__, p, q;
 | |
|     doublereal t, apoaq, aqoap;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal theta, small;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     doublereal fastr[5];
 | |
|     extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     logical applv, rsvec;
 | |
|     extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *), drotm_(integer *, doublereal 
 | |
| 	    *, integer *, doublereal *, integer *, doublereal *);
 | |
|     logical rotok;
 | |
|     doublereal rootsfmin, cs, sn;
 | |
|     extern /* Subroutine */ void dlascl_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *);
 | |
|     extern integer idamax_(integer *, doublereal *, integer *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer ijblsk, swband, blskip;
 | |
|     doublereal mxaapq;
 | |
|     extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *);
 | |
|     doublereal thsign, mxsinj;
 | |
|     integer ir1, emptsw, notrot, iswrot, jbc;
 | |
|     doublereal big;
 | |
|     integer kbl, lkahead, igl, ibr, jgl, nbl, mvl;
 | |
|     doublereal rootbig, rooteps;
 | |
|     integer rowskip;
 | |
|     doublereal roottol;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --sva;
 | |
|     --d__;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     applv = lsame_(jobv, "A");
 | |
|     rsvec = lsame_(jobv, "V");
 | |
|     if (! (rsvec || applv || lsame_(jobv, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0 || *n > *m) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < *m) {
 | |
| 	*info = -5;
 | |
|     } else if ((rsvec || applv) && *mv < 0) {
 | |
| 	*info = -8;
 | |
|     } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
 | |
| 	*info = -10;
 | |
|     } else if (*tol <= *eps) {
 | |
| 	*info = -13;
 | |
|     } else if (*nsweep < 0) {
 | |
| 	*info = -14;
 | |
|     } else if (*lwork < *m) {
 | |
| 	*info = -16;
 | |
|     } else {
 | |
| 	*info = 0;
 | |
|     }
 | |
| 
 | |
| /*     #:( */
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DGSVJ0", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (rsvec) {
 | |
| 	mvl = *n;
 | |
|     } else if (applv) {
 | |
| 	mvl = *mv;
 | |
|     }
 | |
|     rsvec = rsvec || applv;
 | |
|     rooteps = sqrt(*eps);
 | |
|     rootsfmin = sqrt(*sfmin);
 | |
|     small = *sfmin / *eps;
 | |
|     big = 1. / *sfmin;
 | |
|     rootbig = 1. / rootsfmin;
 | |
|     bigtheta = 1. / rooteps;
 | |
|     roottol = sqrt(*tol);
 | |
| 
 | |
| /*     -#- Row-cyclic Jacobi SVD algorithm with column pivoting -#- */
 | |
| 
 | |
|     emptsw = *n * (*n - 1) / 2;
 | |
|     notrot = 0;
 | |
|     fastr[0] = 0.;
 | |
| 
 | |
| /*     -#- Row-cyclic pivot strategy with de Rijk's pivoting -#- */
 | |
| 
 | |
|     swband = 0;
 | |
| /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
 | |
| /*     if SGESVJ is used as a computational routine in the preconditioned */
 | |
| /*     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure */
 | |
| /*     ...... */
 | |
|     kbl = f2cmin(8,*n);
 | |
| /* [TP] KBL is a tuning parameter that defines the tile size in the */
 | |
| /*     tiling of the p-q loops of pivot pairs. In general, an optimal */
 | |
| /*     value of KBL depends on the matrix dimensions and on the */
 | |
| /*     parameters of the computer's memory. */
 | |
| 
 | |
|     nbl = *n / kbl;
 | |
|     if (nbl * kbl != *n) {
 | |
| 	++nbl;
 | |
|     }
 | |
| /* Computing 2nd power */
 | |
|     i__1 = kbl;
 | |
|     blskip = i__1 * i__1 + 1;
 | |
| /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
 | |
|     rowskip = f2cmin(5,kbl);
 | |
| /* [TP] ROWSKIP is a tuning parameter. */
 | |
|     lkahead = 1;
 | |
| /* [TP] LKAHEAD is a tuning parameter. */
 | |
|     swband = 0;
 | |
|     pskipped = 0;
 | |
| 
 | |
|     i__1 = *nsweep;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| 	mxaapq = 0.;
 | |
| 	mxsinj = 0.;
 | |
| 	iswrot = 0;
 | |
| 
 | |
| 	notrot = 0;
 | |
| 	pskipped = 0;
 | |
| 
 | |
| 	i__2 = nbl;
 | |
| 	for (ibr = 1; ibr <= i__2; ++ibr) {
 | |
| 	    igl = (ibr - 1) * kbl + 1;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__4 = lkahead, i__5 = nbl - ibr;
 | |
| 	    i__3 = f2cmin(i__4,i__5);
 | |
| 	    for (ir1 = 0; ir1 <= i__3; ++ir1) {
 | |
| 
 | |
| 		igl += ir1 * kbl;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__5 = igl + kbl - 1, i__6 = *n - 1;
 | |
| 		i__4 = f2cmin(i__5,i__6);
 | |
| 		for (p = igl; p <= i__4; ++p) {
 | |
| 		    i__5 = *n - p + 1;
 | |
| 		    q = idamax_(&i__5, &sva[p], &c__1) + p - 1;
 | |
| 		    if (p != q) {
 | |
| 			dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 
 | |
| 				1], &c__1);
 | |
| 			if (rsvec) {
 | |
| 			    dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 | |
| 				    v_dim1 + 1], &c__1);
 | |
| 			}
 | |
| 			temp1 = sva[p];
 | |
| 			sva[p] = sva[q];
 | |
| 			sva[q] = temp1;
 | |
| 			temp1 = d__[p];
 | |
| 			d__[p] = d__[q];
 | |
| 			d__[q] = temp1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (ir1 == 0) {
 | |
| 
 | |
| /*        Column norms are periodically updated by explicit */
 | |
| /*        norm computation. */
 | |
| /*        Caveat: */
 | |
| /*        Some BLAS implementations compute DNRM2(M,A(1,p),1) */
 | |
| /*        as DSQRT(DDOT(M,A(1,p),1,A(1,p),1)), which may result in */
 | |
| /*        overflow for ||A(:,p)||_2 > DSQRT(overflow_threshold), and */
 | |
| /*        undeflow for ||A(:,p)||_2 < DSQRT(underflow_threshold). */
 | |
| /*        Hence, DNRM2 cannot be trusted, not even in the case when */
 | |
| /*        the true norm is far from the under(over)flow boundaries. */
 | |
| /*        If properly implemented DNRM2 is available, the IF-THEN-ELSE */
 | |
| /*        below should read "AAPP = DNRM2( M, A(1,p), 1 ) * D(p)". */
 | |
| 
 | |
| 			if (sva[p] < rootbig && sva[p] > rootsfmin) {
 | |
| 			    sva[p] = dnrm2_(m, &a[p * a_dim1 + 1], &c__1) * 
 | |
| 				    d__[p];
 | |
| 			} else {
 | |
| 			    temp1 = 0.;
 | |
| 			    aapp = 1.;
 | |
| 			    dlassq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
 | |
| 				    aapp);
 | |
| 			    sva[p] = temp1 * sqrt(aapp) * d__[p];
 | |
| 			}
 | |
| 			aapp = sva[p];
 | |
| 		    } else {
 | |
| 			aapp = sva[p];
 | |
| 		    }
 | |
| 
 | |
| 		    if (aapp > 0.) {
 | |
| 
 | |
| 			pskipped = 0;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 			i__6 = igl + kbl - 1;
 | |
| 			i__5 = f2cmin(i__6,*n);
 | |
| 			for (q = p + 1; q <= i__5; ++q) {
 | |
| 
 | |
| 			    aaqq = sva[q];
 | |
| 			    if (aaqq > 0.) {
 | |
| 
 | |
| 				aapp0 = aapp;
 | |
| 				if (aaqq >= 1.) {
 | |
| 				    rotok = small * aapp <= aaqq;
 | |
| 				    if (aapp < big / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * d__[p] * d__[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 | |
| 						work[1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aapp, &
 | |
| 						d__[p], m, &c__1, &work[1], 
 | |
| 						lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[1], &c__1, &a[q 
 | |
| 						* a_dim1 + 1], &c__1) * d__[q]
 | |
| 						 / aaqq;
 | |
| 				    }
 | |
| 				} else {
 | |
| 				    rotok = aapp <= aaqq / small;
 | |
| 				    if (aapp > small / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * d__[p] * d__[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
 | |
| 						work[1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aaqq, &
 | |
| 						d__[q], m, &c__1, &work[1], 
 | |
| 						lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[1], &c__1, &a[p 
 | |
| 						* a_dim1 + 1], &c__1) * d__[p]
 | |
| 						 / aapp;
 | |
| 				    }
 | |
| 				}
 | |
| 
 | |
| /* Computing MAX */
 | |
| 				d__1 = mxaapq, d__2 = abs(aapq);
 | |
| 				mxaapq = f2cmax(d__1,d__2);
 | |
| 
 | |
| /*        TO rotate or NOT to rotate, THAT is the question ... */
 | |
| 
 | |
| 				if (abs(aapq) > *tol) {
 | |
| 
 | |
| /*           ROTATED = ROTATED + ONE */
 | |
| 
 | |
| 				    if (ir1 == 0) {
 | |
| 					notrot = 0;
 | |
| 					pskipped = 0;
 | |
| 					++iswrot;
 | |
| 				    }
 | |
| 
 | |
| 				    if (rotok) {
 | |
| 
 | |
| 					aqoap = aaqq / aapp;
 | |
| 					apoaq = aapp / aaqq;
 | |
| 					theta = (d__1 = aqoap - apoaq, abs(
 | |
| 						d__1)) * -.5 / aapq;
 | |
| 
 | |
| 					if (abs(theta) > bigtheta) {
 | |
| 
 | |
| 					    t = .5 / theta;
 | |
| 					    fastr[2] = t * d__[p] / d__[q];
 | |
| 					    fastr[3] = -t * d__[q] / d__[p];
 | |
| 					    drotm_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &a[q * a_dim1 + 1], 
 | |
| 						    &c__1, fastr);
 | |
| 					    if (rsvec) {
 | |
| 			  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 | |
| 				  v_dim1 + 1], &c__1, fastr);
 | |
| 					    }
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(t);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| 
 | |
| 					} else {
 | |
| 
 | |
| 
 | |
| 					    thsign = -d_sign(&c_b42, &aapq);
 | |
| 					    t = 1. / (theta + thsign * sqrt(
 | |
| 						    theta * theta + 1.));
 | |
| 					    cs = sqrt(1. / (t * t + 1.));
 | |
| 					    sn = t * cs;
 | |
| 
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(sn);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| 
 | |
| 					    apoaq = d__[p] / d__[q];
 | |
| 					    aqoap = d__[q] / d__[p];
 | |
| 					    if (d__[p] >= 1.) {
 | |
| 			  if (d__[q] >= 1.) {
 | |
| 			      fastr[2] = t * apoaq;
 | |
| 			      fastr[3] = -t * aqoap;
 | |
| 			      d__[p] *= cs;
 | |
| 			      d__[q] *= cs;
 | |
| 			      drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * 
 | |
| 				      a_dim1 + 1], &c__1, fastr);
 | |
| 			      if (rsvec) {
 | |
| 				  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
 | |
| 					  q * v_dim1 + 1], &c__1, fastr);
 | |
| 			      }
 | |
| 			  } else {
 | |
| 			      d__1 = -t * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = cs * sn * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      d__[p] *= cs;
 | |
| 			      d__[q] /= cs;
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			  }
 | |
| 					    } else {
 | |
| 			  if (d__[q] >= 1.) {
 | |
| 			      d__1 = t * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = -cs * sn * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      d__[p] /= cs;
 | |
| 			      d__[q] *= cs;
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			  } else {
 | |
| 			      if (d__[p] >= d__[q]) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  d__[p] *= cs;
 | |
| 				  d__[q] /= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = -t * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = cs * sn * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      } else {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  d__[p] /= cs;
 | |
| 				  d__[q] *= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = t * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = -cs * sn * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      }
 | |
| 			  }
 | |
| 					    }
 | |
| 					}
 | |
| 
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 | |
| 						work[1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aapp, &
 | |
| 						c_b42, m, &c__1, &work[1], 
 | |
| 						lda, &ierr);
 | |
| 					dlascl_("G", &c__0, &c__0, &aaqq, &
 | |
| 						c_b42, m, &c__1, &a[q * 
 | |
| 						a_dim1 + 1], lda, &ierr);
 | |
| 					temp1 = -aapq * d__[p] / d__[q];
 | |
| 					daxpy_(m, &temp1, &work[1], &c__1, &a[
 | |
| 						q * a_dim1 + 1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &c_b42, &
 | |
| 						aaqq, m, &c__1, &a[q * a_dim1 
 | |
| 						+ 1], lda, &ierr);
 | |
| /* Computing MAX */
 | |
| 					d__1 = 0., d__2 = 1. - aapq * aapq;
 | |
| 					sva[q] = aaqq * sqrt((f2cmax(d__1,d__2)))
 | |
| 						;
 | |
| 					mxsinj = f2cmax(mxsinj,*sfmin);
 | |
| 				    }
 | |
| /*           END IF ROTOK THEN ... ELSE */
 | |
| 
 | |
| /*           In the case of cancellation in updating SVA(q), SVA(p) */
 | |
| /*           recompute SVA(q), SVA(p). */
 | |
| /* Computing 2nd power */
 | |
| 				    d__1 = sva[q] / aaqq;
 | |
| 				    if (d__1 * d__1 <= rooteps) {
 | |
| 					if (aaqq < rootbig && aaqq > 
 | |
| 						rootsfmin) {
 | |
| 					    sva[q] = dnrm2_(m, &a[q * a_dim1 
 | |
| 						    + 1], &c__1) * d__[q];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aaqq = 1.;
 | |
| 					    dlassq_(m, &a[q * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aaqq);
 | |
| 					    sva[q] = t * sqrt(aaqq) * d__[q];
 | |
| 					}
 | |
| 				    }
 | |
| 				    if (aapp / aapp0 <= rooteps) {
 | |
| 					if (aapp < rootbig && aapp > 
 | |
| 						rootsfmin) {
 | |
| 					    aapp = dnrm2_(m, &a[p * a_dim1 + 
 | |
| 						    1], &c__1) * d__[p];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aapp = 1.;
 | |
| 					    dlassq_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aapp);
 | |
| 					    aapp = t * sqrt(aapp) * d__[p];
 | |
| 					}
 | |
| 					sva[p] = aapp;
 | |
| 				    }
 | |
| 
 | |
| 				} else {
 | |
| /*        A(:,p) and A(:,q) already numerically orthogonal */
 | |
| 				    if (ir1 == 0) {
 | |
| 					++notrot;
 | |
| 				    }
 | |
| 				    ++pskipped;
 | |
| 				}
 | |
| 			    } else {
 | |
| /*        A(:,q) is zero column */
 | |
| 				if (ir1 == 0) {
 | |
| 				    ++notrot;
 | |
| 				}
 | |
| 				++pskipped;
 | |
| 			    }
 | |
| 
 | |
| 			    if (i__ <= swband && pskipped > rowskip) {
 | |
| 				if (ir1 == 0) {
 | |
| 				    aapp = -aapp;
 | |
| 				}
 | |
| 				notrot = 0;
 | |
| 				goto L2103;
 | |
| 			    }
 | |
| 
 | |
| /* L2002: */
 | |
| 			}
 | |
| /*     END q-LOOP */
 | |
| 
 | |
| L2103:
 | |
| /*     bailed out of q-loop */
 | |
| 			sva[p] = aapp;
 | |
| 		    } else {
 | |
| 			sva[p] = aapp;
 | |
| 			if (ir1 == 0 && aapp == 0.) {
 | |
| /* Computing MIN */
 | |
| 			    i__5 = igl + kbl - 1;
 | |
| 			    notrot = notrot + f2cmin(i__5,*n) - p;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /* L2001: */
 | |
| 		}
 | |
| /*     end of the p-loop */
 | |
| /*     end of doing the block ( ibr, ibr ) */
 | |
| /* L1002: */
 | |
| 	    }
 | |
| /*     end of ir1-loop */
 | |
| 
 | |
| /* ........................................................ */
 | |
| /* ... go to the off diagonal blocks */
 | |
| 
 | |
| 	    igl = (ibr - 1) * kbl + 1;
 | |
| 
 | |
| 	    i__3 = nbl;
 | |
| 	    for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
 | |
| 
 | |
| 		jgl = (jbc - 1) * kbl + 1;
 | |
| 
 | |
| /*        doing the block at ( ibr, jbc ) */
 | |
| 
 | |
| 		ijblsk = 0;
 | |
| /* Computing MIN */
 | |
| 		i__5 = igl + kbl - 1;
 | |
| 		i__4 = f2cmin(i__5,*n);
 | |
| 		for (p = igl; p <= i__4; ++p) {
 | |
| 
 | |
| 		    aapp = sva[p];
 | |
| 
 | |
| 		    if (aapp > 0.) {
 | |
| 
 | |
| 			pskipped = 0;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 			i__6 = jgl + kbl - 1;
 | |
| 			i__5 = f2cmin(i__6,*n);
 | |
| 			for (q = jgl; q <= i__5; ++q) {
 | |
| 
 | |
| 			    aaqq = sva[q];
 | |
| 
 | |
| 			    if (aaqq > 0.) {
 | |
| 				aapp0 = aapp;
 | |
| 
 | |
| /*     -#- M x 2 Jacobi SVD -#- */
 | |
| 
 | |
| /*        -#- Safe Gram matrix computation -#- */
 | |
| 
 | |
| 				if (aaqq >= 1.) {
 | |
| 				    if (aapp >= aaqq) {
 | |
| 					rotok = small * aapp <= aaqq;
 | |
| 				    } else {
 | |
| 					rotok = small * aaqq <= aapp;
 | |
| 				    }
 | |
| 				    if (aapp < big / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * d__[p] * d__[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 | |
| 						work[1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aapp, &
 | |
| 						d__[p], m, &c__1, &work[1], 
 | |
| 						lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[1], &c__1, &a[q 
 | |
| 						* a_dim1 + 1], &c__1) * d__[q]
 | |
| 						 / aaqq;
 | |
| 				    }
 | |
| 				} else {
 | |
| 				    if (aapp >= aaqq) {
 | |
| 					rotok = aapp <= aaqq / small;
 | |
| 				    } else {
 | |
| 					rotok = aaqq <= aapp / small;
 | |
| 				    }
 | |
| 				    if (aapp > small / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * d__[p] * d__[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
 | |
| 						work[1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aaqq, &
 | |
| 						d__[q], m, &c__1, &work[1], 
 | |
| 						lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[1], &c__1, &a[p 
 | |
| 						* a_dim1 + 1], &c__1) * d__[p]
 | |
| 						 / aapp;
 | |
| 				    }
 | |
| 				}
 | |
| 
 | |
| /* Computing MAX */
 | |
| 				d__1 = mxaapq, d__2 = abs(aapq);
 | |
| 				mxaapq = f2cmax(d__1,d__2);
 | |
| 
 | |
| /*        TO rotate or NOT to rotate, THAT is the question ... */
 | |
| 
 | |
| 				if (abs(aapq) > *tol) {
 | |
| 				    notrot = 0;
 | |
| /*           ROTATED  = ROTATED + 1 */
 | |
| 				    pskipped = 0;
 | |
| 				    ++iswrot;
 | |
| 
 | |
| 				    if (rotok) {
 | |
| 
 | |
| 					aqoap = aaqq / aapp;
 | |
| 					apoaq = aapp / aaqq;
 | |
| 					theta = (d__1 = aqoap - apoaq, abs(
 | |
| 						d__1)) * -.5 / aapq;
 | |
| 					if (aaqq > aapp0) {
 | |
| 					    theta = -theta;
 | |
| 					}
 | |
| 
 | |
| 					if (abs(theta) > bigtheta) {
 | |
| 					    t = .5 / theta;
 | |
| 					    fastr[2] = t * d__[p] / d__[q];
 | |
| 					    fastr[3] = -t * d__[q] / d__[p];
 | |
| 					    drotm_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &a[q * a_dim1 + 1], 
 | |
| 						    &c__1, fastr);
 | |
| 					    if (rsvec) {
 | |
| 			  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 | |
| 				  v_dim1 + 1], &c__1, fastr);
 | |
| 					    }
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(t);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| 					} else {
 | |
| 
 | |
| 
 | |
| 					    thsign = -d_sign(&c_b42, &aapq);
 | |
| 					    if (aaqq > aapp0) {
 | |
| 			  thsign = -thsign;
 | |
| 					    }
 | |
| 					    t = 1. / (theta + thsign * sqrt(
 | |
| 						    theta * theta + 1.));
 | |
| 					    cs = sqrt(1. / (t * t + 1.));
 | |
| 					    sn = t * cs;
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(sn);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| 
 | |
| 					    apoaq = d__[p] / d__[q];
 | |
| 					    aqoap = d__[q] / d__[p];
 | |
| 					    if (d__[p] >= 1.) {
 | |
| 
 | |
| 			  if (d__[q] >= 1.) {
 | |
| 			      fastr[2] = t * apoaq;
 | |
| 			      fastr[3] = -t * aqoap;
 | |
| 			      d__[p] *= cs;
 | |
| 			      d__[q] *= cs;
 | |
| 			      drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * 
 | |
| 				      a_dim1 + 1], &c__1, fastr);
 | |
| 			      if (rsvec) {
 | |
| 				  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
 | |
| 					  q * v_dim1 + 1], &c__1, fastr);
 | |
| 			      }
 | |
| 			  } else {
 | |
| 			      d__1 = -t * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = cs * sn * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			      d__[p] *= cs;
 | |
| 			      d__[q] /= cs;
 | |
| 			  }
 | |
| 					    } else {
 | |
| 			  if (d__[q] >= 1.) {
 | |
| 			      d__1 = t * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = -cs * sn * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			      d__[p] /= cs;
 | |
| 			      d__[q] *= cs;
 | |
| 			  } else {
 | |
| 			      if (d__[p] >= d__[q]) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  d__[p] *= cs;
 | |
| 				  d__[q] /= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = -t * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = cs * sn * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      } else {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  d__[p] /= cs;
 | |
| 				  d__[q] *= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = t * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = -cs * sn * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      }
 | |
| 			  }
 | |
| 					    }
 | |
| 					}
 | |
| 
 | |
| 				    } else {
 | |
| 					if (aapp > aaqq) {
 | |
| 					    dcopy_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &work[1], &c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aapp, 
 | |
| 						    &c_b42, m, &c__1, &work[1]
 | |
| 						    , lda, &ierr);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aaqq, 
 | |
| 						    &c_b42, m, &c__1, &a[q * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| 					    temp1 = -aapq * d__[p] / d__[q];
 | |
| 					    daxpy_(m, &temp1, &work[1], &c__1,
 | |
| 						     &a[q * a_dim1 + 1], &
 | |
| 						    c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &c_b42,
 | |
| 						     &aaqq, m, &c__1, &a[q * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - aapq * 
 | |
| 						    aapq;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| 					    mxsinj = f2cmax(mxsinj,*sfmin);
 | |
| 					} else {
 | |
| 					    dcopy_(m, &a[q * a_dim1 + 1], &
 | |
| 						    c__1, &work[1], &c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aaqq, 
 | |
| 						    &c_b42, m, &c__1, &work[1]
 | |
| 						    , lda, &ierr);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aapp, 
 | |
| 						    &c_b42, m, &c__1, &a[p * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| 					    temp1 = -aapq * d__[q] / d__[p];
 | |
| 					    daxpy_(m, &temp1, &work[1], &c__1,
 | |
| 						     &a[p * a_dim1 + 1], &
 | |
| 						    c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &c_b42,
 | |
| 						     &aapp, m, &c__1, &a[p * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - aapq * 
 | |
| 						    aapq;
 | |
| 					    sva[p] = aapp * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| 					    mxsinj = f2cmax(mxsinj,*sfmin);
 | |
| 					}
 | |
| 				    }
 | |
| /*           END IF ROTOK THEN ... ELSE */
 | |
| 
 | |
| /*           In the case of cancellation in updating SVA(q) */
 | |
| /* Computing 2nd power */
 | |
| 				    d__1 = sva[q] / aaqq;
 | |
| 				    if (d__1 * d__1 <= rooteps) {
 | |
| 					if (aaqq < rootbig && aaqq > 
 | |
| 						rootsfmin) {
 | |
| 					    sva[q] = dnrm2_(m, &a[q * a_dim1 
 | |
| 						    + 1], &c__1) * d__[q];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aaqq = 1.;
 | |
| 					    dlassq_(m, &a[q * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aaqq);
 | |
| 					    sva[q] = t * sqrt(aaqq) * d__[q];
 | |
| 					}
 | |
| 				    }
 | |
| /* Computing 2nd power */
 | |
| 				    d__1 = aapp / aapp0;
 | |
| 				    if (d__1 * d__1 <= rooteps) {
 | |
| 					if (aapp < rootbig && aapp > 
 | |
| 						rootsfmin) {
 | |
| 					    aapp = dnrm2_(m, &a[p * a_dim1 + 
 | |
| 						    1], &c__1) * d__[p];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aapp = 1.;
 | |
| 					    dlassq_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aapp);
 | |
| 					    aapp = t * sqrt(aapp) * d__[p];
 | |
| 					}
 | |
| 					sva[p] = aapp;
 | |
| 				    }
 | |
| /*              end of OK rotation */
 | |
| 				} else {
 | |
| 				    ++notrot;
 | |
| 				    ++pskipped;
 | |
| 				    ++ijblsk;
 | |
| 				}
 | |
| 			    } else {
 | |
| 				++notrot;
 | |
| 				++pskipped;
 | |
| 				++ijblsk;
 | |
| 			    }
 | |
| 
 | |
| 			    if (i__ <= swband && ijblsk >= blskip) {
 | |
| 				sva[p] = aapp;
 | |
| 				notrot = 0;
 | |
| 				goto L2011;
 | |
| 			    }
 | |
| 			    if (i__ <= swband && pskipped > rowskip) {
 | |
| 				aapp = -aapp;
 | |
| 				notrot = 0;
 | |
| 				goto L2203;
 | |
| 			    }
 | |
| 
 | |
| /* L2200: */
 | |
| 			}
 | |
| /*        end of the q-loop */
 | |
| L2203:
 | |
| 
 | |
| 			sva[p] = aapp;
 | |
| 
 | |
| 		    } else {
 | |
| 			if (aapp == 0.) {
 | |
| /* Computing MIN */
 | |
| 			    i__5 = jgl + kbl - 1;
 | |
| 			    notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
 | |
| 			}
 | |
| 			if (aapp < 0.) {
 | |
| 			    notrot = 0;
 | |
| 			}
 | |
| 		    }
 | |
| /* L2100: */
 | |
| 		}
 | |
| /*     end of the p-loop */
 | |
| /* L2010: */
 | |
| 	    }
 | |
| /*     end of the jbc-loop */
 | |
| L2011:
 | |
| /* 2011 bailed out of the jbc-loop */
 | |
| /* Computing MIN */
 | |
| 	    i__4 = igl + kbl - 1;
 | |
| 	    i__3 = f2cmin(i__4,*n);
 | |
| 	    for (p = igl; p <= i__3; ++p) {
 | |
| 		sva[p] = (d__1 = sva[p], abs(d__1));
 | |
| /* L2012: */
 | |
| 	    }
 | |
| 
 | |
| /* L2000: */
 | |
| 	}
 | |
| /* 2000 :: end of the ibr-loop */
 | |
| 
 | |
| 	if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
 | |
| 	    sva[*n] = dnrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
 | |
| 	} else {
 | |
| 	    t = 0.;
 | |
| 	    aapp = 1.;
 | |
| 	    dlassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
 | |
| 	    sva[*n] = t * sqrt(aapp) * d__[*n];
 | |
| 	}
 | |
| 
 | |
| /*     Additional steering devices */
 | |
| 
 | |
| 	if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
 | |
| 	    swband = i__;
 | |
| 	}
 | |
| 
 | |
| 	if (i__ > swband + 1 && mxaapq < (doublereal) (*n) * *tol && (
 | |
| 		doublereal) (*n) * mxaapq * mxsinj < *tol) {
 | |
| 	    goto L1994;
 | |
| 	}
 | |
| 
 | |
| 	if (notrot >= emptsw) {
 | |
| 	    goto L1994;
 | |
| 	}
 | |
| /* L1993: */
 | |
|     }
 | |
| /*     end i=1:NSWEEP loop */
 | |
| /* #:) Reaching this point means that the procedure has completed the given */
 | |
| /*     number of iterations. */
 | |
|     *info = *nsweep - 1;
 | |
|     goto L1995;
 | |
| L1994:
 | |
| /* #:) Reaching this point means that during the i-th sweep all pivots were */
 | |
| /*     below the given tolerance, causing early exit. */
 | |
| 
 | |
|     *info = 0;
 | |
| /* #:) INFO = 0 confirms successful iterations. */
 | |
| L1995:
 | |
| 
 | |
| /*     Sort the vector D. */
 | |
|     i__1 = *n - 1;
 | |
|     for (p = 1; p <= i__1; ++p) {
 | |
| 	i__2 = *n - p + 1;
 | |
| 	q = idamax_(&i__2, &sva[p], &c__1) + p - 1;
 | |
| 	if (p != q) {
 | |
| 	    temp1 = sva[p];
 | |
| 	    sva[p] = sva[q];
 | |
| 	    sva[q] = temp1;
 | |
| 	    temp1 = d__[p];
 | |
| 	    d__[p] = d__[q];
 | |
| 	    d__[q] = temp1;
 | |
| 	    dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
 | |
| 	    if (rsvec) {
 | |
| 		dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
 | |
| 			c__1);
 | |
| 	    }
 | |
| 	}
 | |
| /* L5991: */
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| } /* dgsvj0_ */
 | |
| 
 |