211 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGETF2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetf2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetf2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetf2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGETF2 computes an LU factorization of a general m-by-n matrix A
 | |
| *> using partial pivoting with row interchanges.
 | |
| *>
 | |
| *> The factorization has the form
 | |
| *>    A = P * L * U
 | |
| *> where P is a permutation matrix, L is lower triangular with unit
 | |
| *> diagonal elements (lower trapezoidal if m > n), and U is upper
 | |
| *> triangular (upper trapezoidal if m < n).
 | |
| *>
 | |
| *> This is the right-looking Level 2 BLAS version of the algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the m by n matrix to be factored.
 | |
| *>          On exit, the factors L and U from the factorization
 | |
| *>          A = P*L*U; the unit diagonal elements of L are not stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (min(M,N))
 | |
| *>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | |
| *>          matrix was interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -k, the k-th argument had an illegal value
 | |
| *>          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
 | |
| *>               has been completed, but the factor U is exactly
 | |
| *>               singular, and division by zero will occur if it is used
 | |
| *>               to solve a system of equations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   SFMIN
 | |
|       INTEGER            I, J, JP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       INTEGER            IDAMAX
 | |
|       EXTERNAL           DLAMCH, IDAMAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGER, DSCAL, DSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGETF2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Compute machine safe minimum
 | |
| *
 | |
|       SFMIN = DLAMCH('S')
 | |
| *
 | |
|       DO 10 J = 1, MIN( M, N )
 | |
| *
 | |
| *        Find pivot and test for singularity.
 | |
| *
 | |
|          JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 )
 | |
|          IPIV( J ) = JP
 | |
|          IF( A( JP, J ).NE.ZERO ) THEN
 | |
| *
 | |
| *           Apply the interchange to columns 1:N.
 | |
| *
 | |
|             IF( JP.NE.J )
 | |
|      $         CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
 | |
| *
 | |
| *           Compute elements J+1:M of J-th column.
 | |
| *
 | |
|             IF( J.LT.M ) THEN
 | |
|                IF( ABS(A( J, J )) .GE. SFMIN ) THEN
 | |
|                   CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
 | |
|                ELSE
 | |
|                  DO 20 I = 1, M-J
 | |
|                     A( J+I, J ) = A( J+I, J ) / A( J, J )
 | |
|    20            CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|          ELSE IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
|             INFO = J
 | |
|          END IF
 | |
| *
 | |
|          IF( J.LT.MIN( M, N ) ) THEN
 | |
| *
 | |
| *           Update trailing submatrix.
 | |
| *
 | |
|             CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
 | |
|      $                 A( J+1, J+1 ), LDA )
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGETF2
 | |
| *
 | |
|       END
 |