2358 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2358 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b17 = 0.;
 | |
| static doublereal c_b18 = 1.;
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* > \brief \b DGESVJ */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DGESVJ + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvj.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvj.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvj.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, */
 | |
| /*                          LDV, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N */
 | |
| /*       CHARACTER*1        JOBA, JOBU, JOBV */
 | |
| /*       DOUBLE PRECISION   A( LDA, * ), SVA( N ), V( LDV, * ), */
 | |
| /*      $                   WORK( LWORK ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DGESVJ computes the singular value decomposition (SVD) of a real */
 | |
| /* > M-by-N matrix A, where M >= N. The SVD of A is written as */
 | |
| /* >                                    [++]   [xx]   [x0]   [xx] */
 | |
| /* >              A = U * SIGMA * V^t,  [++] = [xx] * [ox] * [xx] */
 | |
| /* >                                    [++]   [xx] */
 | |
| /* > where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal */
 | |
| /* > matrix, and V is an N-by-N orthogonal matrix. The diagonal elements */
 | |
| /* > of SIGMA are the singular values of A. The columns of U and V are the */
 | |
| /* > left and the right singular vectors of A, respectively. */
 | |
| /* > DGESVJ can sometimes compute tiny singular values and their singular vectors much */
 | |
| /* > more accurately than other SVD routines, see below under Further Details. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBA */
 | |
| /* > \verbatim */
 | |
| /* >          JOBA is CHARACTER*1 */
 | |
| /* >          Specifies the structure of A. */
 | |
| /* >          = 'L': The input matrix A is lower triangular; */
 | |
| /* >          = 'U': The input matrix A is upper triangular; */
 | |
| /* >          = 'G': The input matrix A is general M-by-N matrix, M >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBU */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU is CHARACTER*1 */
 | |
| /* >          Specifies whether to compute the left singular vectors */
 | |
| /* >          (columns of U): */
 | |
| /* >          = 'U': The left singular vectors corresponding to the nonzero */
 | |
| /* >                 singular values are computed and returned in the leading */
 | |
| /* >                 columns of A. See more details in the description of A. */
 | |
| /* >                 The default numerical orthogonality threshold is set to */
 | |
| /* >                 approximately TOL=CTOL*EPS, CTOL=DSQRT(M), EPS=DLAMCH('E'). */
 | |
| /* >          = 'C': Analogous to JOBU='U', except that user can control the */
 | |
| /* >                 level of numerical orthogonality of the computed left */
 | |
| /* >                 singular vectors. TOL can be set to TOL = CTOL*EPS, where */
 | |
| /* >                 CTOL is given on input in the array WORK. */
 | |
| /* >                 No CTOL smaller than ONE is allowed. CTOL greater */
 | |
| /* >                 than 1 / EPS is meaningless. The option 'C' */
 | |
| /* >                 can be used if M*EPS is satisfactory orthogonality */
 | |
| /* >                 of the computed left singular vectors, so CTOL=M could */
 | |
| /* >                 save few sweeps of Jacobi rotations. */
 | |
| /* >                 See the descriptions of A and WORK(1). */
 | |
| /* >          = 'N': The matrix U is not computed. However, see the */
 | |
| /* >                 description of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBV */
 | |
| /* > \verbatim */
 | |
| /* >          JOBV is CHARACTER*1 */
 | |
| /* >          Specifies whether to compute the right singular vectors, that */
 | |
| /* >          is, the matrix V: */
 | |
| /* >          = 'V':  the matrix V is computed and returned in the array V */
 | |
| /* >          = 'A':  the Jacobi rotations are applied to the MV-by-N */
 | |
| /* >                  array V. In other words, the right singular vector */
 | |
| /* >                  matrix V is not computed explicitly, instead it is */
 | |
| /* >                  applied to an MV-by-N matrix initially stored in the */
 | |
| /* >                  first MV rows of V. */
 | |
| /* >          = 'N':  the matrix V is not computed and the array V is not */
 | |
| /* >                  referenced */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the input matrix A. 1/DLAMCH('E') > M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the input matrix A. */
 | |
| /* >          M >= N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit : */
 | |
| /* >          If JOBU = 'U' .OR. JOBU = 'C' : */
 | |
| /* >                 If INFO = 0 : */
 | |
| /* >                 RANKA orthonormal columns of U are returned in the */
 | |
| /* >                 leading RANKA columns of the array A. Here RANKA <= N */
 | |
| /* >                 is the number of computed singular values of A that are */
 | |
| /* >                 above the underflow threshold DLAMCH('S'). The singular */
 | |
| /* >                 vectors corresponding to underflowed or zero singular */
 | |
| /* >                 values are not computed. The value of RANKA is returned */
 | |
| /* >                 in the array WORK as RANKA=NINT(WORK(2)). Also see the */
 | |
| /* >                 descriptions of SVA and WORK. The computed columns of U */
 | |
| /* >                 are mutually numerically orthogonal up to approximately */
 | |
| /* >                 TOL=DSQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'), */
 | |
| /* >                 see the description of JOBU. */
 | |
| /* >                 If INFO > 0 : */
 | |
| /* >                 the procedure DGESVJ did not converge in the given number */
 | |
| /* >                 of iterations (sweeps). In that case, the computed */
 | |
| /* >                 columns of U may not be orthogonal up to TOL. The output */
 | |
| /* >                 U (stored in A), SIGMA (given by the computed singular */
 | |
| /* >                 values in SVA(1:N)) and V is still a decomposition of the */
 | |
| /* >                 input matrix A in the sense that the residual */
 | |
| /* >                 ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small. */
 | |
| /* > */
 | |
| /* >          If JOBU = 'N' : */
 | |
| /* >                 If INFO = 0 : */
 | |
| /* >                 Note that the left singular vectors are 'for free' in the */
 | |
| /* >                 one-sided Jacobi SVD algorithm. However, if only the */
 | |
| /* >                 singular values are needed, the level of numerical */
 | |
| /* >                 orthogonality of U is not an issue and iterations are */
 | |
| /* >                 stopped when the columns of the iterated matrix are */
 | |
| /* >                 numerically orthogonal up to approximately M*EPS. Thus, */
 | |
| /* >                 on exit, A contains the columns of U scaled with the */
 | |
| /* >                 corresponding singular values. */
 | |
| /* >                 If INFO > 0 : */
 | |
| /* >                 the procedure DGESVJ did not converge in the given number */
 | |
| /* >                 of iterations (sweeps). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SVA */
 | |
| /* > \verbatim */
 | |
| /* >          SVA is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On exit : */
 | |
| /* >          If INFO = 0 : */
 | |
| /* >          depending on the value SCALE = WORK(1), we have: */
 | |
| /* >                 If SCALE = ONE : */
 | |
| /* >                 SVA(1:N) contains the computed singular values of A. */
 | |
| /* >                 During the computation SVA contains the Euclidean column */
 | |
| /* >                 norms of the iterated matrices in the array A. */
 | |
| /* >                 If SCALE .NE. ONE : */
 | |
| /* >                 The singular values of A are SCALE*SVA(1:N), and this */
 | |
| /* >                 factored representation is due to the fact that some of the */
 | |
| /* >                 singular values of A might underflow or overflow. */
 | |
| /* >          If INFO > 0 : */
 | |
| /* >          the procedure DGESVJ did not converge in the given number of */
 | |
| /* >          iterations (sweeps) and SCALE*SVA(1:N) may not be accurate. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MV */
 | |
| /* > \verbatim */
 | |
| /* >          MV is INTEGER */
 | |
| /* >          If JOBV = 'A', then the product of Jacobi rotations in DGESVJ */
 | |
| /* >          is applied to the first MV rows of V. See the description of JOBV. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is DOUBLE PRECISION array, dimension (LDV,N) */
 | |
| /* >          If JOBV = 'V', then V contains on exit the N-by-N matrix of */
 | |
| /* >                         the right singular vectors; */
 | |
| /* >          If JOBV = 'A', then V contains the product of the computed right */
 | |
| /* >                         singular vector matrix and the initial matrix in */
 | |
| /* >                         the array V. */
 | |
| /* >          If JOBV = 'N', then V is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >          The leading dimension of the array V, LDV >= 1. */
 | |
| /* >          If JOBV = 'V', then LDV >= f2cmax(1,N). */
 | |
| /* >          If JOBV = 'A', then LDV >= f2cmax(1,MV) . */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (LWORK) */
 | |
| /* >          On entry : */
 | |
| /* >          If JOBU = 'C' : */
 | |
| /* >          WORK(1) = CTOL, where CTOL defines the threshold for convergence. */
 | |
| /* >                    The process stops if all columns of A are mutually */
 | |
| /* >                    orthogonal up to CTOL*EPS, EPS=DLAMCH('E'). */
 | |
| /* >                    It is required that CTOL >= ONE, i.e. it is not */
 | |
| /* >                    allowed to force the routine to obtain orthogonality */
 | |
| /* >                    below EPS. */
 | |
| /* >          On exit : */
 | |
| /* >          WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N) */
 | |
| /* >                    are the computed singular values of A. */
 | |
| /* >                    (See description of SVA().) */
 | |
| /* >          WORK(2) = NINT(WORK(2)) is the number of the computed nonzero */
 | |
| /* >                    singular values. */
 | |
| /* >          WORK(3) = NINT(WORK(3)) is the number of the computed singular */
 | |
| /* >                    values that are larger than the underflow threshold. */
 | |
| /* >          WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi */
 | |
| /* >                    rotations needed for numerical convergence. */
 | |
| /* >          WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep. */
 | |
| /* >                    This is useful information in cases when DGESVJ did */
 | |
| /* >                    not converge, as it can be used to estimate whether */
 | |
| /* >                    the output is still useful and for post festum analysis. */
 | |
| /* >          WORK(6) = the largest absolute value over all sines of the */
 | |
| /* >                    Jacobi rotation angles in the last sweep. It can be */
 | |
| /* >                    useful for a post festum analysis. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          length of WORK, WORK >= MAX(6,M+N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, then the i-th argument had an illegal value */
 | |
| /* >          > 0:  DGESVJ did not converge in the maximal allowed number (30) */
 | |
| /* >                of sweeps. The output may still be useful. See the */
 | |
| /* >                description of WORK. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup doubleGEcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane */
 | |
| /* >  rotations. The rotations are implemented as fast scaled rotations of */
 | |
| /* >  Anda and Park [1]. In the case of underflow of the Jacobi angle, a */
 | |
| /* >  modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses */
 | |
| /* >  column interchanges of de Rijk [2]. The relative accuracy of the computed */
 | |
| /* >  singular values and the accuracy of the computed singular vectors (in */
 | |
| /* >  angle metric) is as guaranteed by the theory of Demmel and Veselic [3]. */
 | |
| /* >  The condition number that determines the accuracy in the full rank case */
 | |
| /* >  is essentially min_{D=diag} kappa(A*D), where kappa(.) is the */
 | |
| /* >  spectral condition number. The best performance of this Jacobi SVD */
 | |
| /* >  procedure is achieved if used in an  accelerated version of Drmac and */
 | |
| /* >  Veselic [5,6], and it is the kernel routine in the SIGMA library [7]. */
 | |
| /* >  Some tunning parameters (marked with [TP]) are available for the */
 | |
| /* >  implementer. */
 | |
| /* >  The computational range for the nonzero singular values is the  machine */
 | |
| /* >  number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even */
 | |
| /* >  denormalized singular values can be computed with the corresponding */
 | |
| /* >  gradual loss of accurate digits. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  ============ */
 | |
| /* > */
 | |
| /* >  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling. */
 | |
| /* >     SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174. */
 | |
| /* > [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the */
 | |
| /* >     singular value decomposition on a vector computer. */
 | |
| /* >     SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371. */
 | |
| /* > [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR. */
 | |
| /* > [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular */
 | |
| /* >     value computation in floating point arithmetic. */
 | |
| /* >     SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222. */
 | |
| /* > [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. */
 | |
| /* >     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. */
 | |
| /* >     LAPACK Working note 169. */
 | |
| /* > [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. */
 | |
| /* >     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. */
 | |
| /* >     LAPACK Working note 170. */
 | |
| /* > [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, */
 | |
| /* >     QSVD, (H,K)-SVD computations. */
 | |
| /* >     Department of Mathematics, University of Zagreb, 2008. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* >  \par Bugs, examples and comments: */
 | |
| /*   ================================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  =========================== */
 | |
| /* >  Please report all bugs and send interesting test examples and comments to */
 | |
| /* >  drmac@math.hr. Thank you. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dgesvj_(char *joba, char *jobu, char *jobv, integer *m, 
 | |
| 	integer *n, doublereal *a, integer *lda, doublereal *sva, integer *mv,
 | |
| 	 doublereal *v, integer *ldv, doublereal *work, integer *lwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal aapp, aapq, aaqq;
 | |
|     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal ctol;
 | |
|     integer ierr;
 | |
|     doublereal bigtheta;
 | |
|     integer pskipped;
 | |
|     doublereal aapp0;
 | |
|     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | |
|     doublereal temp1;
 | |
|     integer i__, p, q;
 | |
|     doublereal t;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal large, apoaq, aqoap;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal theta, small, sfmin;
 | |
|     logical lsvec;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     doublereal fastr[5];
 | |
|     extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     doublereal epsln;
 | |
|     logical applv, rsvec;
 | |
|     extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *);
 | |
|     logical uctol;
 | |
|     extern /* Subroutine */ void drotm_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *);
 | |
|     logical lower, upper, rotok;
 | |
|     integer n2, n4;
 | |
|     extern /* Subroutine */ void dgsvj0_(char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *, integer *, integer *), dgsvj1_(
 | |
| 	    char *, integer *, integer *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
 | |
| 	     integer *, integer *);
 | |
|     doublereal rootsfmin;
 | |
|     integer n34;
 | |
|     doublereal cs;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal sn;
 | |
|     extern /* Subroutine */ void dlascl_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *);
 | |
|     extern integer idamax_(integer *, doublereal *, integer *);
 | |
|     extern /* Subroutine */ void dlaset_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     integer ijblsk, swband, blskip;
 | |
|     doublereal mxaapq;
 | |
|     extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *);
 | |
|     doublereal thsign, mxsinj;
 | |
|     integer ir1, emptsw, notrot, iswrot, jbc;
 | |
|     doublereal big;
 | |
|     integer kbl, lkahead, igl, ibr, jgl, nbl;
 | |
|     doublereal skl;
 | |
|     logical goscale;
 | |
|     doublereal tol;
 | |
|     integer mvl;
 | |
|     logical noscale;
 | |
|     doublereal rootbig, rooteps;
 | |
|     integer rowskip;
 | |
|     doublereal roottol;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     from BLAS */
 | |
| /*     from LAPACK */
 | |
| /*     from BLAS */
 | |
| /*     from LAPACK */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --sva;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     lsvec = lsame_(jobu, "U");
 | |
|     uctol = lsame_(jobu, "C");
 | |
|     rsvec = lsame_(jobv, "V");
 | |
|     applv = lsame_(jobv, "A");
 | |
|     upper = lsame_(joba, "U");
 | |
|     lower = lsame_(joba, "L");
 | |
| 
 | |
|     if (! (upper || lower || lsame_(joba, "G"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (lsvec || uctol || lsame_(jobu, "N"))) 
 | |
| 	    {
 | |
| 	*info = -2;
 | |
|     } else if (! (rsvec || applv || lsame_(jobv, "N"))) 
 | |
| 	    {
 | |
| 	*info = -3;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0 || *n > *m) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < *m) {
 | |
| 	*info = -7;
 | |
|     } else if (*mv < 0) {
 | |
| 	*info = -9;
 | |
|     } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
 | |
| 	*info = -11;
 | |
|     } else if (uctol && work[1] <= 1.) {
 | |
| 	*info = -12;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__1 = *m + *n;
 | |
| 	if (*lwork < f2cmax(i__1,6)) {
 | |
| 	    *info = -13;
 | |
| 	} else {
 | |
| 	    *info = 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     #:( */
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DGESVJ", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /* #:) Quick return for void matrix */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Set numerical parameters */
 | |
| /*     The stopping criterion for Jacobi rotations is */
 | |
| 
 | |
| /*     max_{i<>j}|A(:,i)^T * A(:,j)|/(||A(:,i)||*||A(:,j)||) < CTOL*EPS */
 | |
| 
 | |
| /*     where EPS is the round-off and CTOL is defined as follows: */
 | |
| 
 | |
|     if (uctol) {
 | |
| /*        ... user controlled */
 | |
| 	ctol = work[1];
 | |
|     } else {
 | |
| /*        ... default */
 | |
| 	if (lsvec || rsvec || applv) {
 | |
| 	    ctol = sqrt((doublereal) (*m));
 | |
| 	} else {
 | |
| 	    ctol = (doublereal) (*m);
 | |
| 	}
 | |
|     }
 | |
| /*     ... and the machine dependent parameters are */
 | |
| /* [!]  (Make sure that DLAMCH() works properly on the target machine.) */
 | |
| 
 | |
|     epsln = dlamch_("Epsilon");
 | |
|     rooteps = sqrt(epsln);
 | |
|     sfmin = dlamch_("SafeMinimum");
 | |
|     rootsfmin = sqrt(sfmin);
 | |
|     small = sfmin / epsln;
 | |
|     big = dlamch_("Overflow");
 | |
| /*     BIG         = ONE    / SFMIN */
 | |
|     rootbig = 1. / rootsfmin;
 | |
|     large = big / sqrt((doublereal) (*m * *n));
 | |
|     bigtheta = 1. / rooteps;
 | |
| 
 | |
|     tol = ctol * epsln;
 | |
|     roottol = sqrt(tol);
 | |
| 
 | |
|     if ((doublereal) (*m) * epsln >= 1.) {
 | |
| 	*info = -4;
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DGESVJ", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize the right singular vector matrix. */
 | |
| 
 | |
|     if (rsvec) {
 | |
| 	mvl = *n;
 | |
| 	dlaset_("A", &mvl, n, &c_b17, &c_b18, &v[v_offset], ldv);
 | |
|     } else if (applv) {
 | |
| 	mvl = *mv;
 | |
|     }
 | |
|     rsvec = rsvec || applv;
 | |
| 
 | |
| /*     Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N ) */
 | |
| /* (!)  If necessary, scale A to protect the largest singular value */
 | |
| /*     from overflow. It is possible that saving the largest singular */
 | |
| /*     value destroys the information about the small ones. */
 | |
| /*     This initial scaling is almost minimal in the sense that the */
 | |
| /*     goal is to make sure that no column norm overflows, and that */
 | |
| /*     DSQRT(N)*max_i SVA(i) does not overflow. If INFinite entries */
 | |
| /*     in A are detected, the procedure returns with INFO=-6. */
 | |
| 
 | |
|     skl = 1. / sqrt((doublereal) (*m) * (doublereal) (*n));
 | |
|     noscale = TRUE_;
 | |
|     goscale = TRUE_;
 | |
| 
 | |
|     if (lower) {
 | |
| /*        the input matrix is M-by-N lower triangular (trapezoidal) */
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    aapp = 0.;
 | |
| 	    aaqq = 1.;
 | |
| 	    i__2 = *m - p + 1;
 | |
| 	    dlassq_(&i__2, &a[p + p * a_dim1], &c__1, &aapp, &aaqq);
 | |
| 	    if (aapp > big) {
 | |
| 		*info = -6;
 | |
| 		i__2 = -(*info);
 | |
| 		xerbla_("DGESVJ", &i__2, (ftnlen)6);
 | |
| 		return;
 | |
| 	    }
 | |
| 	    aaqq = sqrt(aaqq);
 | |
| 	    if (aapp < big / aaqq && noscale) {
 | |
| 		sva[p] = aapp * aaqq;
 | |
| 	    } else {
 | |
| 		noscale = FALSE_;
 | |
| 		sva[p] = aapp * (aaqq * skl);
 | |
| 		if (goscale) {
 | |
| 		    goscale = FALSE_;
 | |
| 		    i__2 = p - 1;
 | |
| 		    for (q = 1; q <= i__2; ++q) {
 | |
| 			sva[q] *= skl;
 | |
| /* L1873: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| /* L1874: */
 | |
| 	}
 | |
|     } else if (upper) {
 | |
| /*        the input matrix is M-by-N upper triangular (trapezoidal) */
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    aapp = 0.;
 | |
| 	    aaqq = 1.;
 | |
| 	    dlassq_(&p, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq);
 | |
| 	    if (aapp > big) {
 | |
| 		*info = -6;
 | |
| 		i__2 = -(*info);
 | |
| 		xerbla_("DGESVJ", &i__2, (ftnlen)6);
 | |
| 		return;
 | |
| 	    }
 | |
| 	    aaqq = sqrt(aaqq);
 | |
| 	    if (aapp < big / aaqq && noscale) {
 | |
| 		sva[p] = aapp * aaqq;
 | |
| 	    } else {
 | |
| 		noscale = FALSE_;
 | |
| 		sva[p] = aapp * (aaqq * skl);
 | |
| 		if (goscale) {
 | |
| 		    goscale = FALSE_;
 | |
| 		    i__2 = p - 1;
 | |
| 		    for (q = 1; q <= i__2; ++q) {
 | |
| 			sva[q] *= skl;
 | |
| /* L2873: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| /* L2874: */
 | |
| 	}
 | |
|     } else {
 | |
| /*        the input matrix is M-by-N general dense */
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    aapp = 0.;
 | |
| 	    aaqq = 1.;
 | |
| 	    dlassq_(m, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq);
 | |
| 	    if (aapp > big) {
 | |
| 		*info = -6;
 | |
| 		i__2 = -(*info);
 | |
| 		xerbla_("DGESVJ", &i__2, (ftnlen)6);
 | |
| 		return;
 | |
| 	    }
 | |
| 	    aaqq = sqrt(aaqq);
 | |
| 	    if (aapp < big / aaqq && noscale) {
 | |
| 		sva[p] = aapp * aaqq;
 | |
| 	    } else {
 | |
| 		noscale = FALSE_;
 | |
| 		sva[p] = aapp * (aaqq * skl);
 | |
| 		if (goscale) {
 | |
| 		    goscale = FALSE_;
 | |
| 		    i__2 = p - 1;
 | |
| 		    for (q = 1; q <= i__2; ++q) {
 | |
| 			sva[q] *= skl;
 | |
| /* L3873: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| /* L3874: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (noscale) {
 | |
| 	skl = 1.;
 | |
|     }
 | |
| 
 | |
| /*     Move the smaller part of the spectrum from the underflow threshold */
 | |
| /* (!)  Start by determining the position of the nonzero entries of the */
 | |
| /*     array SVA() relative to ( SFMIN, BIG ). */
 | |
| 
 | |
|     aapp = 0.;
 | |
|     aaqq = big;
 | |
|     i__1 = *n;
 | |
|     for (p = 1; p <= i__1; ++p) {
 | |
| 	if (sva[p] != 0.) {
 | |
| /* Computing MIN */
 | |
| 	    d__1 = aaqq, d__2 = sva[p];
 | |
| 	    aaqq = f2cmin(d__1,d__2);
 | |
| 	}
 | |
| /* Computing MAX */
 | |
| 	d__1 = aapp, d__2 = sva[p];
 | |
| 	aapp = f2cmax(d__1,d__2);
 | |
| /* L4781: */
 | |
|     }
 | |
| 
 | |
| /* #:) Quick return for zero matrix */
 | |
| 
 | |
|     if (aapp == 0.) {
 | |
| 	if (lsvec) {
 | |
| 	    dlaset_("G", m, n, &c_b17, &c_b18, &a[a_offset], lda);
 | |
| 	}
 | |
| 	work[1] = 1.;
 | |
| 	work[2] = 0.;
 | |
| 	work[3] = 0.;
 | |
| 	work[4] = 0.;
 | |
| 	work[5] = 0.;
 | |
| 	work[6] = 0.;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /* #:) Quick return for one-column matrix */
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	if (lsvec) {
 | |
| 	    dlascl_("G", &c__0, &c__0, &sva[1], &skl, m, &c__1, &a[a_dim1 + 1]
 | |
| 		    , lda, &ierr);
 | |
| 	}
 | |
| 	work[1] = 1. / skl;
 | |
| 	if (sva[1] >= sfmin) {
 | |
| 	    work[2] = 1.;
 | |
| 	} else {
 | |
| 	    work[2] = 0.;
 | |
| 	}
 | |
| 	work[3] = 0.;
 | |
| 	work[4] = 0.;
 | |
| 	work[5] = 0.;
 | |
| 	work[6] = 0.;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Protect small singular values from underflow, and try to */
 | |
| /*     avoid underflows/overflows in computing Jacobi rotations. */
 | |
| 
 | |
|     sn = sqrt(sfmin / epsln);
 | |
|     temp1 = sqrt(big / (doublereal) (*n));
 | |
|     if (aapp <= sn || aaqq >= temp1 || sn <= aaqq && aapp <= temp1) {
 | |
| /* Computing MIN */
 | |
| 	d__1 = big, d__2 = temp1 / aapp;
 | |
| 	temp1 = f2cmin(d__1,d__2);
 | |
| /*         AAQQ  = AAQQ*TEMP1 */
 | |
| /*         AAPP  = AAPP*TEMP1 */
 | |
|     } else if (aaqq <= sn && aapp <= temp1) {
 | |
| /* Computing MIN */
 | |
| 	d__1 = sn / aaqq, d__2 = big / (aapp * sqrt((doublereal) (*n)));
 | |
| 	temp1 = f2cmin(d__1,d__2);
 | |
| /*         AAQQ  = AAQQ*TEMP1 */
 | |
| /*         AAPP  = AAPP*TEMP1 */
 | |
|     } else if (aaqq >= sn && aapp >= temp1) {
 | |
| /* Computing MAX */
 | |
| 	d__1 = sn / aaqq, d__2 = temp1 / aapp;
 | |
| 	temp1 = f2cmax(d__1,d__2);
 | |
| /*         AAQQ  = AAQQ*TEMP1 */
 | |
| /*         AAPP  = AAPP*TEMP1 */
 | |
|     } else if (aaqq <= sn && aapp >= temp1) {
 | |
| /* Computing MIN */
 | |
| 	d__1 = sn / aaqq, d__2 = big / (sqrt((doublereal) (*n)) * aapp);
 | |
| 	temp1 = f2cmin(d__1,d__2);
 | |
| /*         AAQQ  = AAQQ*TEMP1 */
 | |
| /*         AAPP  = AAPP*TEMP1 */
 | |
|     } else {
 | |
| 	temp1 = 1.;
 | |
|     }
 | |
| 
 | |
| /*     Scale, if necessary */
 | |
| 
 | |
|     if (temp1 != 1.) {
 | |
| 	dlascl_("G", &c__0, &c__0, &c_b18, &temp1, n, &c__1, &sva[1], n, &
 | |
| 		ierr);
 | |
|     }
 | |
|     skl = temp1 * skl;
 | |
|     if (skl != 1.) {
 | |
| 	dlascl_(joba, &c__0, &c__0, &c_b18, &skl, m, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
| 	skl = 1. / skl;
 | |
|     }
 | |
| 
 | |
| /*     Row-cyclic Jacobi SVD algorithm with column pivoting */
 | |
| 
 | |
|     emptsw = *n * (*n - 1) / 2;
 | |
|     notrot = 0;
 | |
|     fastr[0] = 0.;
 | |
| 
 | |
| /*     A is represented in factored form A = A * diag(WORK), where diag(WORK) */
 | |
| /*     is initialized to identity. WORK is updated during fast scaled */
 | |
| /*     rotations. */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (q = 1; q <= i__1; ++q) {
 | |
| 	work[q] = 1.;
 | |
| /* L1868: */
 | |
|     }
 | |
| 
 | |
| 
 | |
|     swband = 3;
 | |
| /* [TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective */
 | |
| /*     if DGESVJ is used as a computational routine in the preconditioned */
 | |
| /*     Jacobi SVD algorithm DGESVJ. For sweeps i=1:SWBAND the procedure */
 | |
| /*     works on pivots inside a band-like region around the diagonal. */
 | |
| /*     The boundaries are determined dynamically, based on the number of */
 | |
| /*     pivots above a threshold. */
 | |
| 
 | |
|     kbl = f2cmin(8,*n);
 | |
| /* [TP] KBL is a tuning parameter that defines the tile size in the */
 | |
| /*     tiling of the p-q loops of pivot pairs. In general, an optimal */
 | |
| /*     value of KBL depends on the matrix dimensions and on the */
 | |
| /*     parameters of the computer's memory. */
 | |
| 
 | |
|     nbl = *n / kbl;
 | |
|     if (nbl * kbl != *n) {
 | |
| 	++nbl;
 | |
|     }
 | |
| 
 | |
| /* Computing 2nd power */
 | |
|     i__1 = kbl;
 | |
|     blskip = i__1 * i__1;
 | |
| /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
 | |
| 
 | |
|     rowskip = f2cmin(5,kbl);
 | |
| /* [TP] ROWSKIP is a tuning parameter. */
 | |
| 
 | |
|     lkahead = 1;
 | |
| /* [TP] LKAHEAD is a tuning parameter. */
 | |
| 
 | |
| /*     Quasi block transformations, using the lower (upper) triangular */
 | |
| /*     structure of the input matrix. The quasi-block-cycling usually */
 | |
| /*     invokes cubic convergence. Big part of this cycle is done inside */
 | |
| /*     canonical subspaces of dimensions less than M. */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = 64, i__2 = kbl << 2;
 | |
|     if ((lower || upper) && *n > f2cmax(i__1,i__2)) {
 | |
| /* [TP] The number of partition levels and the actual partition are */
 | |
| /*     tuning parameters. */
 | |
| 	n4 = *n / 4;
 | |
| 	n2 = *n / 2;
 | |
| 	n34 = n4 * 3;
 | |
| 	if (applv) {
 | |
| 	    q = 0;
 | |
| 	} else {
 | |
| 	    q = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (lower) {
 | |
| 
 | |
| /*     This works very well on lower triangular matrices, in particular */
 | |
| /*     in the framework of the preconditioned Jacobi SVD (xGEJSV). */
 | |
| /*     The idea is simple: */
 | |
| /*     [+ 0 0 0]   Note that Jacobi transformations of [0 0] */
 | |
| /*     [+ + 0 0]                                       [0 0] */
 | |
| /*     [+ + x 0]   actually work on [x 0]              [x 0] */
 | |
| /*     [+ + x x]                    [x x].             [x x] */
 | |
| 
 | |
| 	    i__1 = *m - n34;
 | |
| 	    i__2 = *n - n34;
 | |
| 	    i__3 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, &i__1, &i__2, &a[n34 + 1 + (n34 + 1) * a_dim1], lda,
 | |
| 		     &work[n34 + 1], &sva[n34 + 1], &mvl, &v[n34 * q + 1 + (
 | |
| 		    n34 + 1) * v_dim1], ldv, &epsln, &sfmin, &tol, &c__2, &
 | |
| 		    work[*n + 1], &i__3, &ierr);
 | |
| 
 | |
| 	    i__1 = *m - n2;
 | |
| 	    i__2 = n34 - n2;
 | |
| 	    i__3 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, &i__1, &i__2, &a[n2 + 1 + (n2 + 1) * a_dim1], lda, &
 | |
| 		    work[n2 + 1], &sva[n2 + 1], &mvl, &v[n2 * q + 1 + (n2 + 1)
 | |
| 		     * v_dim1], ldv, &epsln, &sfmin, &tol, &c__2, &work[*n + 
 | |
| 		    1], &i__3, &ierr);
 | |
| 
 | |
| 	    i__1 = *m - n2;
 | |
| 	    i__2 = *n - n2;
 | |
| 	    i__3 = *lwork - *n;
 | |
| 	    dgsvj1_(jobv, &i__1, &i__2, &n4, &a[n2 + 1 + (n2 + 1) * a_dim1], 
 | |
| 		    lda, &work[n2 + 1], &sva[n2 + 1], &mvl, &v[n2 * q + 1 + (
 | |
| 		    n2 + 1) * v_dim1], ldv, &epsln, &sfmin, &tol, &c__1, &
 | |
| 		    work[*n + 1], &i__3, &ierr);
 | |
| 
 | |
| 	    i__1 = *m - n4;
 | |
| 	    i__2 = n2 - n4;
 | |
| 	    i__3 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, &i__1, &i__2, &a[n4 + 1 + (n4 + 1) * a_dim1], lda, &
 | |
| 		    work[n4 + 1], &sva[n4 + 1], &mvl, &v[n4 * q + 1 + (n4 + 1)
 | |
| 		     * v_dim1], ldv, &epsln, &sfmin, &tol, &c__1, &work[*n + 
 | |
| 		    1], &i__3, &ierr);
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, m, &n4, &a[a_offset], lda, &work[1], &sva[1], &mvl, 
 | |
| 		    &v[v_offset], ldv, &epsln, &sfmin, &tol, &c__1, &work[*n 
 | |
| 		    + 1], &i__1, &ierr);
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    dgsvj1_(jobv, m, &n2, &n4, &a[a_offset], lda, &work[1], &sva[1], &
 | |
| 		    mvl, &v[v_offset], ldv, &epsln, &sfmin, &tol, &c__1, &
 | |
| 		    work[*n + 1], &i__1, &ierr);
 | |
| 
 | |
| 
 | |
| 	} else if (upper) {
 | |
| 
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, &n4, &n4, &a[a_offset], lda, &work[1], &sva[1], &
 | |
| 		    mvl, &v[v_offset], ldv, &epsln, &sfmin, &tol, &c__2, &
 | |
| 		    work[*n + 1], &i__1, &ierr);
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, &n2, &n4, &a[(n4 + 1) * a_dim1 + 1], lda, &work[n4 
 | |
| 		    + 1], &sva[n4 + 1], &mvl, &v[n4 * q + 1 + (n4 + 1) * 
 | |
| 		    v_dim1], ldv, &epsln, &sfmin, &tol, &c__1, &work[*n + 1], 
 | |
| 		    &i__1, &ierr);
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    dgsvj1_(jobv, &n2, &n2, &n4, &a[a_offset], lda, &work[1], &sva[1],
 | |
| 		     &mvl, &v[v_offset], ldv, &epsln, &sfmin, &tol, &c__1, &
 | |
| 		    work[*n + 1], &i__1, &ierr);
 | |
| 
 | |
| 	    i__1 = n2 + n4;
 | |
| 	    i__2 = *lwork - *n;
 | |
| 	    dgsvj0_(jobv, &i__1, &n4, &a[(n2 + 1) * a_dim1 + 1], lda, &work[
 | |
| 		    n2 + 1], &sva[n2 + 1], &mvl, &v[n2 * q + 1 + (n2 + 1) * 
 | |
| 		    v_dim1], ldv, &epsln, &sfmin, &tol, &c__1, &work[*n + 1], 
 | |
| 		    &i__2, &ierr);
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| 
 | |
|     for (i__ = 1; i__ <= 30; ++i__) {
 | |
| 
 | |
| 
 | |
| 	mxaapq = 0.;
 | |
| 	mxsinj = 0.;
 | |
| 	iswrot = 0;
 | |
| 
 | |
| 	notrot = 0;
 | |
| 	pskipped = 0;
 | |
| 
 | |
| /*     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */
 | |
| /*     1 <= p < q <= N. This is the first step toward a blocked implementation */
 | |
| /*     of the rotations. New implementation, based on block transformations, */
 | |
| /*     is under development. */
 | |
| 
 | |
| 	i__1 = nbl;
 | |
| 	for (ibr = 1; ibr <= i__1; ++ibr) {
 | |
| 
 | |
| 	    igl = (ibr - 1) * kbl + 1;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__3 = lkahead, i__4 = nbl - ibr;
 | |
| 	    i__2 = f2cmin(i__3,i__4);
 | |
| 	    for (ir1 = 0; ir1 <= i__2; ++ir1) {
 | |
| 
 | |
| 		igl += ir1 * kbl;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = igl + kbl - 1, i__5 = *n - 1;
 | |
| 		i__3 = f2cmin(i__4,i__5);
 | |
| 		for (p = igl; p <= i__3; ++p) {
 | |
| 
 | |
| 
 | |
| 		    i__4 = *n - p + 1;
 | |
| 		    q = idamax_(&i__4, &sva[p], &c__1) + p - 1;
 | |
| 		    if (p != q) {
 | |
| 			dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 
 | |
| 				1], &c__1);
 | |
| 			if (rsvec) {
 | |
| 			    dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 | |
| 				    v_dim1 + 1], &c__1);
 | |
| 			}
 | |
| 			temp1 = sva[p];
 | |
| 			sva[p] = sva[q];
 | |
| 			sva[q] = temp1;
 | |
| 			temp1 = work[p];
 | |
| 			work[p] = work[q];
 | |
| 			work[q] = temp1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (ir1 == 0) {
 | |
| 
 | |
| /*        Column norms are periodically updated by explicit */
 | |
| /*        norm computation. */
 | |
| /*        Caveat: */
 | |
| /*        Unfortunately, some BLAS implementations compute DNRM2(M,A(1,p),1) */
 | |
| /*        as DSQRT(DDOT(M,A(1,p),1,A(1,p),1)), which may cause the result to */
 | |
| /*        overflow for ||A(:,p)||_2 > DSQRT(overflow_threshold), and to */
 | |
| /*        underflow for ||A(:,p)||_2 < DSQRT(underflow_threshold). */
 | |
| /*        Hence, DNRM2 cannot be trusted, not even in the case when */
 | |
| /*        the true norm is far from the under(over)flow boundaries. */
 | |
| /*        If properly implemented DNRM2 is available, the IF-THEN-ELSE */
 | |
| /*        below should read "AAPP = DNRM2( M, A(1,p), 1 ) * WORK(p)". */
 | |
| 
 | |
| 			if (sva[p] < rootbig && sva[p] > rootsfmin) {
 | |
| 			    sva[p] = dnrm2_(m, &a[p * a_dim1 + 1], &c__1) * 
 | |
| 				    work[p];
 | |
| 			} else {
 | |
| 			    temp1 = 0.;
 | |
| 			    aapp = 1.;
 | |
| 			    dlassq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
 | |
| 				    aapp);
 | |
| 			    sva[p] = temp1 * sqrt(aapp) * work[p];
 | |
| 			}
 | |
| 			aapp = sva[p];
 | |
| 		    } else {
 | |
| 			aapp = sva[p];
 | |
| 		    }
 | |
| 
 | |
| 		    if (aapp > 0.) {
 | |
| 
 | |
| 			pskipped = 0;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 			i__5 = igl + kbl - 1;
 | |
| 			i__4 = f2cmin(i__5,*n);
 | |
| 			for (q = p + 1; q <= i__4; ++q) {
 | |
| 
 | |
| 			    aaqq = sva[q];
 | |
| 
 | |
| 			    if (aaqq > 0.) {
 | |
| 
 | |
| 				aapp0 = aapp;
 | |
| 				if (aaqq >= 1.) {
 | |
| 				    rotok = small * aapp <= aaqq;
 | |
| 				    if (aapp < big / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * work[p] * work[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 | |
| 						work[*n + 1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aapp, &
 | |
| 						work[p], m, &c__1, &work[*n + 
 | |
| 						1], lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[*n + 1], &c__1, 
 | |
| 						&a[q * a_dim1 + 1], &c__1) * 
 | |
| 						work[q] / aaqq;
 | |
| 				    }
 | |
| 				} else {
 | |
| 				    rotok = aapp <= aaqq / small;
 | |
| 				    if (aapp > small / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * work[p] * work[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
 | |
| 						work[*n + 1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aaqq, &
 | |
| 						work[q], m, &c__1, &work[*n + 
 | |
| 						1], lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[*n + 1], &c__1, 
 | |
| 						&a[p * a_dim1 + 1], &c__1) * 
 | |
| 						work[p] / aapp;
 | |
| 				    }
 | |
| 				}
 | |
| 
 | |
| /* Computing MAX */
 | |
| 				d__1 = mxaapq, d__2 = abs(aapq);
 | |
| 				mxaapq = f2cmax(d__1,d__2);
 | |
| 
 | |
| /*        TO rotate or NOT to rotate, THAT is the question ... */
 | |
| 
 | |
| 				if (abs(aapq) > tol) {
 | |
| 
 | |
| /* [RTD]      ROTATED = ROTATED + ONE */
 | |
| 
 | |
| 				    if (ir1 == 0) {
 | |
| 					notrot = 0;
 | |
| 					pskipped = 0;
 | |
| 					++iswrot;
 | |
| 				    }
 | |
| 
 | |
| 				    if (rotok) {
 | |
| 
 | |
| 					aqoap = aaqq / aapp;
 | |
| 					apoaq = aapp / aaqq;
 | |
| 					theta = (d__1 = aqoap - apoaq, abs(
 | |
| 						d__1)) * -.5 / aapq;
 | |
| 
 | |
| 					if (abs(theta) > bigtheta) {
 | |
| 
 | |
| 					    t = .5 / theta;
 | |
| 					    fastr[2] = t * work[p] / work[q];
 | |
| 					    fastr[3] = -t * work[q] / work[p];
 | |
| 					    drotm_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &a[q * a_dim1 + 1], 
 | |
| 						    &c__1, fastr);
 | |
| 					    if (rsvec) {
 | |
| 			  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 | |
| 				  v_dim1 + 1], &c__1, fastr);
 | |
| 					    }
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(t);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| 
 | |
| 					} else {
 | |
| 
 | |
| 
 | |
| 					    thsign = -d_sign(&c_b18, &aapq);
 | |
| 					    t = 1. / (theta + thsign * sqrt(
 | |
| 						    theta * theta + 1.));
 | |
| 					    cs = sqrt(1. / (t * t + 1.));
 | |
| 					    sn = t * cs;
 | |
| 
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(sn);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| 
 | |
| 					    apoaq = work[p] / work[q];
 | |
| 					    aqoap = work[q] / work[p];
 | |
| 					    if (work[p] >= 1.) {
 | |
| 			  if (work[q] >= 1.) {
 | |
| 			      fastr[2] = t * apoaq;
 | |
| 			      fastr[3] = -t * aqoap;
 | |
| 			      work[p] *= cs;
 | |
| 			      work[q] *= cs;
 | |
| 			      drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * 
 | |
| 				      a_dim1 + 1], &c__1, fastr);
 | |
| 			      if (rsvec) {
 | |
| 				  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
 | |
| 					  q * v_dim1 + 1], &c__1, fastr);
 | |
| 			      }
 | |
| 			  } else {
 | |
| 			      d__1 = -t * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = cs * sn * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      work[p] *= cs;
 | |
| 			      work[q] /= cs;
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			  }
 | |
| 					    } else {
 | |
| 			  if (work[q] >= 1.) {
 | |
| 			      d__1 = t * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = -cs * sn * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      work[p] /= cs;
 | |
| 			      work[q] *= cs;
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			  } else {
 | |
| 			      if (work[p] >= work[q]) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  work[p] *= cs;
 | |
| 				  work[q] /= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = -t * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = cs * sn * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      } else {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  work[p] /= cs;
 | |
| 				  work[q] *= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = t * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = -cs * sn * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      }
 | |
| 			  }
 | |
| 					    }
 | |
| 					}
 | |
| 
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 | |
| 						work[*n + 1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aapp, &
 | |
| 						c_b18, m, &c__1, &work[*n + 1]
 | |
| 						, lda, &ierr);
 | |
| 					dlascl_("G", &c__0, &c__0, &aaqq, &
 | |
| 						c_b18, m, &c__1, &a[q * 
 | |
| 						a_dim1 + 1], lda, &ierr);
 | |
| 					temp1 = -aapq * work[p] / work[q];
 | |
| 					daxpy_(m, &temp1, &work[*n + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &c_b18, &
 | |
| 						aaqq, m, &c__1, &a[q * a_dim1 
 | |
| 						+ 1], lda, &ierr);
 | |
| /* Computing MAX */
 | |
| 					d__1 = 0., d__2 = 1. - aapq * aapq;
 | |
| 					sva[q] = aaqq * sqrt((f2cmax(d__1,d__2)))
 | |
| 						;
 | |
| 					mxsinj = f2cmax(mxsinj,sfmin);
 | |
| 				    }
 | |
| /*           END IF ROTOK THEN ... ELSE */
 | |
| 
 | |
| /*           In the case of cancellation in updating SVA(q), SVA(p) */
 | |
| /*           recompute SVA(q), SVA(p). */
 | |
| 
 | |
| /* Computing 2nd power */
 | |
| 				    d__1 = sva[q] / aaqq;
 | |
| 				    if (d__1 * d__1 <= rooteps) {
 | |
| 					if (aaqq < rootbig && aaqq > 
 | |
| 						rootsfmin) {
 | |
| 					    sva[q] = dnrm2_(m, &a[q * a_dim1 
 | |
| 						    + 1], &c__1) * work[q];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aaqq = 1.;
 | |
| 					    dlassq_(m, &a[q * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aaqq);
 | |
| 					    sva[q] = t * sqrt(aaqq) * work[q];
 | |
| 					}
 | |
| 				    }
 | |
| 				    if (aapp / aapp0 <= rooteps) {
 | |
| 					if (aapp < rootbig && aapp > 
 | |
| 						rootsfmin) {
 | |
| 					    aapp = dnrm2_(m, &a[p * a_dim1 + 
 | |
| 						    1], &c__1) * work[p];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aapp = 1.;
 | |
| 					    dlassq_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aapp);
 | |
| 					    aapp = t * sqrt(aapp) * work[p];
 | |
| 					}
 | |
| 					sva[p] = aapp;
 | |
| 				    }
 | |
| 
 | |
| 				} else {
 | |
| /*        A(:,p) and A(:,q) already numerically orthogonal */
 | |
| 				    if (ir1 == 0) {
 | |
| 					++notrot;
 | |
| 				    }
 | |
| /* [RTD]      SKIPPED  = SKIPPED  + 1 */
 | |
| 				    ++pskipped;
 | |
| 				}
 | |
| 			    } else {
 | |
| /*        A(:,q) is zero column */
 | |
| 				if (ir1 == 0) {
 | |
| 				    ++notrot;
 | |
| 				}
 | |
| 				++pskipped;
 | |
| 			    }
 | |
| 
 | |
| 			    if (i__ <= swband && pskipped > rowskip) {
 | |
| 				if (ir1 == 0) {
 | |
| 				    aapp = -aapp;
 | |
| 				}
 | |
| 				notrot = 0;
 | |
| 				goto L2103;
 | |
| 			    }
 | |
| 
 | |
| /* L2002: */
 | |
| 			}
 | |
| /*     END q-LOOP */
 | |
| 
 | |
| L2103:
 | |
| /*     bailed out of q-loop */
 | |
| 
 | |
| 			sva[p] = aapp;
 | |
| 
 | |
| 		    } else {
 | |
| 			sva[p] = aapp;
 | |
| 			if (ir1 == 0 && aapp == 0.) {
 | |
| /* Computing MIN */
 | |
| 			    i__4 = igl + kbl - 1;
 | |
| 			    notrot = notrot + f2cmin(i__4,*n) - p;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /* L2001: */
 | |
| 		}
 | |
| /*     end of the p-loop */
 | |
| /*     end of doing the block ( ibr, ibr ) */
 | |
| /* L1002: */
 | |
| 	    }
 | |
| /*     end of ir1-loop */
 | |
| 
 | |
| /* ... go to the off diagonal blocks */
 | |
| 
 | |
| 	    igl = (ibr - 1) * kbl + 1;
 | |
| 
 | |
| 	    i__2 = nbl;
 | |
| 	    for (jbc = ibr + 1; jbc <= i__2; ++jbc) {
 | |
| 
 | |
| 		jgl = (jbc - 1) * kbl + 1;
 | |
| 
 | |
| /*        doing the block at ( ibr, jbc ) */
 | |
| 
 | |
| 		ijblsk = 0;
 | |
| /* Computing MIN */
 | |
| 		i__4 = igl + kbl - 1;
 | |
| 		i__3 = f2cmin(i__4,*n);
 | |
| 		for (p = igl; p <= i__3; ++p) {
 | |
| 
 | |
| 		    aapp = sva[p];
 | |
| 		    if (aapp > 0.) {
 | |
| 
 | |
| 			pskipped = 0;
 | |
| 
 | |
| /* Computing MIN */
 | |
| 			i__5 = jgl + kbl - 1;
 | |
| 			i__4 = f2cmin(i__5,*n);
 | |
| 			for (q = jgl; q <= i__4; ++q) {
 | |
| 
 | |
| 			    aaqq = sva[q];
 | |
| 			    if (aaqq > 0.) {
 | |
| 				aapp0 = aapp;
 | |
| 
 | |
| 
 | |
| /*        Safe Gram matrix computation */
 | |
| 
 | |
| 				if (aaqq >= 1.) {
 | |
| 				    if (aapp >= aaqq) {
 | |
| 					rotok = small * aapp <= aaqq;
 | |
| 				    } else {
 | |
| 					rotok = small * aaqq <= aapp;
 | |
| 				    }
 | |
| 				    if (aapp < big / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * work[p] * work[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
 | |
| 						work[*n + 1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aapp, &
 | |
| 						work[p], m, &c__1, &work[*n + 
 | |
| 						1], lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[*n + 1], &c__1, 
 | |
| 						&a[q * a_dim1 + 1], &c__1) * 
 | |
| 						work[q] / aaqq;
 | |
| 				    }
 | |
| 				} else {
 | |
| 				    if (aapp >= aaqq) {
 | |
| 					rotok = aapp <= aaqq / small;
 | |
| 				    } else {
 | |
| 					rotok = aaqq <= aapp / small;
 | |
| 				    }
 | |
| 				    if (aapp > small / aaqq) {
 | |
| 					aapq = ddot_(m, &a[p * a_dim1 + 1], &
 | |
| 						c__1, &a[q * a_dim1 + 1], &
 | |
| 						c__1) * work[p] * work[q] / 
 | |
| 						aaqq / aapp;
 | |
| 				    } else {
 | |
| 					dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
 | |
| 						work[*n + 1], &c__1);
 | |
| 					dlascl_("G", &c__0, &c__0, &aaqq, &
 | |
| 						work[q], m, &c__1, &work[*n + 
 | |
| 						1], lda, &ierr);
 | |
| 					aapq = ddot_(m, &work[*n + 1], &c__1, 
 | |
| 						&a[p * a_dim1 + 1], &c__1) * 
 | |
| 						work[p] / aapp;
 | |
| 				    }
 | |
| 				}
 | |
| 
 | |
| /* Computing MAX */
 | |
| 				d__1 = mxaapq, d__2 = abs(aapq);
 | |
| 				mxaapq = f2cmax(d__1,d__2);
 | |
| 
 | |
| /*        TO rotate or NOT to rotate, THAT is the question ... */
 | |
| 
 | |
| 				if (abs(aapq) > tol) {
 | |
| 				    notrot = 0;
 | |
| /* [RTD]      ROTATED  = ROTATED + 1 */
 | |
| 				    pskipped = 0;
 | |
| 				    ++iswrot;
 | |
| 
 | |
| 				    if (rotok) {
 | |
| 
 | |
| 					aqoap = aaqq / aapp;
 | |
| 					apoaq = aapp / aaqq;
 | |
| 					theta = (d__1 = aqoap - apoaq, abs(
 | |
| 						d__1)) * -.5 / aapq;
 | |
| 					if (aaqq > aapp0) {
 | |
| 					    theta = -theta;
 | |
| 					}
 | |
| 
 | |
| 					if (abs(theta) > bigtheta) {
 | |
| 					    t = .5 / theta;
 | |
| 					    fastr[2] = t * work[p] / work[q];
 | |
| 					    fastr[3] = -t * work[q] / work[p];
 | |
| 					    drotm_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &a[q * a_dim1 + 1], 
 | |
| 						    &c__1, fastr);
 | |
| 					    if (rsvec) {
 | |
| 			  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * 
 | |
| 				  v_dim1 + 1], &c__1, fastr);
 | |
| 					    }
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(t);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| 					} else {
 | |
| 
 | |
| 
 | |
| 					    thsign = -d_sign(&c_b18, &aapq);
 | |
| 					    if (aaqq > aapp0) {
 | |
| 			  thsign = -thsign;
 | |
| 					    }
 | |
| 					    t = 1. / (theta + thsign * sqrt(
 | |
| 						    theta * theta + 1.));
 | |
| 					    cs = sqrt(1. / (t * t + 1.));
 | |
| 					    sn = t * cs;
 | |
| /* Computing MAX */
 | |
| 					    d__1 = mxsinj, d__2 = abs(sn);
 | |
| 					    mxsinj = f2cmax(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = t * apoaq * 
 | |
| 						    aapq + 1.;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - t * aqoap *
 | |
| 						     aapq;
 | |
| 					    aapp *= sqrt((f2cmax(d__1,d__2)));
 | |
| 
 | |
| 					    apoaq = work[p] / work[q];
 | |
| 					    aqoap = work[q] / work[p];
 | |
| 					    if (work[p] >= 1.) {
 | |
| 
 | |
| 			  if (work[q] >= 1.) {
 | |
| 			      fastr[2] = t * apoaq;
 | |
| 			      fastr[3] = -t * aqoap;
 | |
| 			      work[p] *= cs;
 | |
| 			      work[q] *= cs;
 | |
| 			      drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * 
 | |
| 				      a_dim1 + 1], &c__1, fastr);
 | |
| 			      if (rsvec) {
 | |
| 				  drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
 | |
| 					  q * v_dim1 + 1], &c__1, fastr);
 | |
| 			      }
 | |
| 			  } else {
 | |
| 			      d__1 = -t * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = cs * sn * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			      work[p] *= cs;
 | |
| 			      work[q] /= cs;
 | |
| 			  }
 | |
| 					    } else {
 | |
| 			  if (work[q] >= 1.) {
 | |
| 			      d__1 = t * apoaq;
 | |
| 			      daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
 | |
| 				      q * a_dim1 + 1], &c__1);
 | |
| 			      d__1 = -cs * sn * aqoap;
 | |
| 			      daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
 | |
| 				      p * a_dim1 + 1], &c__1);
 | |
| 			      if (rsvec) {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
 | |
| 					  c__1, &v[q * v_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
 | |
| 					  c__1, &v[p * v_dim1 + 1], &c__1);
 | |
| 			      }
 | |
| 			      work[p] /= cs;
 | |
| 			      work[q] *= cs;
 | |
| 			  } else {
 | |
| 			      if (work[p] >= work[q]) {
 | |
| 				  d__1 = -t * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = cs * sn * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  work[p] *= cs;
 | |
| 				  work[q] /= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = -t * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = cs * sn * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      } else {
 | |
| 				  d__1 = t * apoaq;
 | |
| 				  daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, 
 | |
| 					  &a[q * a_dim1 + 1], &c__1);
 | |
| 				  d__1 = -cs * sn * aqoap;
 | |
| 				  daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, 
 | |
| 					  &a[p * a_dim1 + 1], &c__1);
 | |
| 				  work[p] /= cs;
 | |
| 				  work[q] *= cs;
 | |
| 				  if (rsvec) {
 | |
| 				      d__1 = t * apoaq;
 | |
| 				      daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], 
 | |
| 					      &c__1, &v[q * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				      d__1 = -cs * sn * aqoap;
 | |
| 				      daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], 
 | |
| 					      &c__1, &v[p * v_dim1 + 1], &
 | |
| 					      c__1);
 | |
| 				  }
 | |
| 			      }
 | |
| 			  }
 | |
| 					    }
 | |
| 					}
 | |
| 
 | |
| 				    } else {
 | |
| 					if (aapp > aaqq) {
 | |
| 					    dcopy_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &work[*n + 1], &
 | |
| 						    c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aapp, 
 | |
| 						    &c_b18, m, &c__1, &work[*
 | |
| 						    n + 1], lda, &ierr);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aaqq, 
 | |
| 						    &c_b18, m, &c__1, &a[q * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| 					    temp1 = -aapq * work[p] / work[q];
 | |
| 					    daxpy_(m, &temp1, &work[*n + 1], &
 | |
| 						    c__1, &a[q * a_dim1 + 1], 
 | |
| 						    &c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &c_b18,
 | |
| 						     &aaqq, m, &c__1, &a[q * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - aapq * 
 | |
| 						    aapq;
 | |
| 					    sva[q] = aaqq * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| 					    mxsinj = f2cmax(mxsinj,sfmin);
 | |
| 					} else {
 | |
| 					    dcopy_(m, &a[q * a_dim1 + 1], &
 | |
| 						    c__1, &work[*n + 1], &
 | |
| 						    c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aaqq, 
 | |
| 						    &c_b18, m, &c__1, &work[*
 | |
| 						    n + 1], lda, &ierr);
 | |
| 					    dlascl_("G", &c__0, &c__0, &aapp, 
 | |
| 						    &c_b18, m, &c__1, &a[p * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| 					    temp1 = -aapq * work[q] / work[p];
 | |
| 					    daxpy_(m, &temp1, &work[*n + 1], &
 | |
| 						    c__1, &a[p * a_dim1 + 1], 
 | |
| 						    &c__1);
 | |
| 					    dlascl_("G", &c__0, &c__0, &c_b18,
 | |
| 						     &aapp, m, &c__1, &a[p * 
 | |
| 						    a_dim1 + 1], lda, &ierr);
 | |
| /* Computing MAX */
 | |
| 					    d__1 = 0., d__2 = 1. - aapq * 
 | |
| 						    aapq;
 | |
| 					    sva[p] = aapp * sqrt((f2cmax(d__1,
 | |
| 						    d__2)));
 | |
| 					    mxsinj = f2cmax(mxsinj,sfmin);
 | |
| 					}
 | |
| 				    }
 | |
| /*           END IF ROTOK THEN ... ELSE */
 | |
| 
 | |
| /*           In the case of cancellation in updating SVA(q) */
 | |
| /* Computing 2nd power */
 | |
| 				    d__1 = sva[q] / aaqq;
 | |
| 				    if (d__1 * d__1 <= rooteps) {
 | |
| 					if (aaqq < rootbig && aaqq > 
 | |
| 						rootsfmin) {
 | |
| 					    sva[q] = dnrm2_(m, &a[q * a_dim1 
 | |
| 						    + 1], &c__1) * work[q];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aaqq = 1.;
 | |
| 					    dlassq_(m, &a[q * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aaqq);
 | |
| 					    sva[q] = t * sqrt(aaqq) * work[q];
 | |
| 					}
 | |
| 				    }
 | |
| /* Computing 2nd power */
 | |
| 				    d__1 = aapp / aapp0;
 | |
| 				    if (d__1 * d__1 <= rooteps) {
 | |
| 					if (aapp < rootbig && aapp > 
 | |
| 						rootsfmin) {
 | |
| 					    aapp = dnrm2_(m, &a[p * a_dim1 + 
 | |
| 						    1], &c__1) * work[p];
 | |
| 					} else {
 | |
| 					    t = 0.;
 | |
| 					    aapp = 1.;
 | |
| 					    dlassq_(m, &a[p * a_dim1 + 1], &
 | |
| 						    c__1, &t, &aapp);
 | |
| 					    aapp = t * sqrt(aapp) * work[p];
 | |
| 					}
 | |
| 					sva[p] = aapp;
 | |
| 				    }
 | |
| /*              end of OK rotation */
 | |
| 				} else {
 | |
| 				    ++notrot;
 | |
| /* [RTD]      SKIPPED  = SKIPPED  + 1 */
 | |
| 				    ++pskipped;
 | |
| 				    ++ijblsk;
 | |
| 				}
 | |
| 			    } else {
 | |
| 				++notrot;
 | |
| 				++pskipped;
 | |
| 				++ijblsk;
 | |
| 			    }
 | |
| 
 | |
| 			    if (i__ <= swband && ijblsk >= blskip) {
 | |
| 				sva[p] = aapp;
 | |
| 				notrot = 0;
 | |
| 				goto L2011;
 | |
| 			    }
 | |
| 			    if (i__ <= swband && pskipped > rowskip) {
 | |
| 				aapp = -aapp;
 | |
| 				notrot = 0;
 | |
| 				goto L2203;
 | |
| 			    }
 | |
| 
 | |
| /* L2200: */
 | |
| 			}
 | |
| /*        end of the q-loop */
 | |
| L2203:
 | |
| 
 | |
| 			sva[p] = aapp;
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| 			if (aapp == 0.) {
 | |
| /* Computing MIN */
 | |
| 			    i__4 = jgl + kbl - 1;
 | |
| 			    notrot = notrot + f2cmin(i__4,*n) - jgl + 1;
 | |
| 			}
 | |
| 			if (aapp < 0.) {
 | |
| 			    notrot = 0;
 | |
| 			}
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| /* L2100: */
 | |
| 		}
 | |
| /*     end of the p-loop */
 | |
| /* L2010: */
 | |
| 	    }
 | |
| /*     end of the jbc-loop */
 | |
| L2011:
 | |
| /* 2011 bailed out of the jbc-loop */
 | |
| /* Computing MIN */
 | |
| 	    i__3 = igl + kbl - 1;
 | |
| 	    i__2 = f2cmin(i__3,*n);
 | |
| 	    for (p = igl; p <= i__2; ++p) {
 | |
| 		sva[p] = (d__1 = sva[p], abs(d__1));
 | |
| /* L2012: */
 | |
| 	    }
 | |
| /* ** */
 | |
| /* L2000: */
 | |
| 	}
 | |
| /* 2000 :: end of the ibr-loop */
 | |
| 
 | |
| 	if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
 | |
| 	    sva[*n] = dnrm2_(m, &a[*n * a_dim1 + 1], &c__1) * work[*n];
 | |
| 	} else {
 | |
| 	    t = 0.;
 | |
| 	    aapp = 1.;
 | |
| 	    dlassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
 | |
| 	    sva[*n] = t * sqrt(aapp) * work[*n];
 | |
| 	}
 | |
| 
 | |
| /*     Additional steering devices */
 | |
| 
 | |
| 	if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
 | |
| 	    swband = i__;
 | |
| 	}
 | |
| 
 | |
| 	if (i__ > swband + 1 && mxaapq < sqrt((doublereal) (*n)) * tol && (
 | |
| 		doublereal) (*n) * mxaapq * mxsinj < tol) {
 | |
| 	    goto L1994;
 | |
| 	}
 | |
| 
 | |
| 	if (notrot >= emptsw) {
 | |
| 	    goto L1994;
 | |
| 	}
 | |
| 
 | |
| /* L1993: */
 | |
|     }
 | |
| /*     end i=1:NSWEEP loop */
 | |
| 
 | |
| /* #:( Reaching this point means that the procedure has not converged. */
 | |
|     *info = 29;
 | |
|     goto L1995;
 | |
| 
 | |
| L1994:
 | |
| /* #:) Reaching this point means numerical convergence after the i-th */
 | |
| /*     sweep. */
 | |
| 
 | |
|     *info = 0;
 | |
| /* #:) INFO = 0 confirms successful iterations. */
 | |
| L1995:
 | |
| 
 | |
| /*     Sort the singular values and find how many are above */
 | |
| /*     the underflow threshold. */
 | |
| 
 | |
|     n2 = 0;
 | |
|     n4 = 0;
 | |
|     i__1 = *n - 1;
 | |
|     for (p = 1; p <= i__1; ++p) {
 | |
| 	i__2 = *n - p + 1;
 | |
| 	q = idamax_(&i__2, &sva[p], &c__1) + p - 1;
 | |
| 	if (p != q) {
 | |
| 	    temp1 = sva[p];
 | |
| 	    sva[p] = sva[q];
 | |
| 	    sva[q] = temp1;
 | |
| 	    temp1 = work[p];
 | |
| 	    work[p] = work[q];
 | |
| 	    work[q] = temp1;
 | |
| 	    dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
 | |
| 	    if (rsvec) {
 | |
| 		dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
 | |
| 			c__1);
 | |
| 	    }
 | |
| 	}
 | |
| 	if (sva[p] != 0.) {
 | |
| 	    ++n4;
 | |
| 	    if (sva[p] * skl > sfmin) {
 | |
| 		++n2;
 | |
| 	    }
 | |
| 	}
 | |
| /* L5991: */
 | |
|     }
 | |
|     if (sva[*n] != 0.) {
 | |
| 	++n4;
 | |
| 	if (sva[*n] * skl > sfmin) {
 | |
| 	    ++n2;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Normalize the left singular vectors. */
 | |
| 
 | |
|     if (lsvec || uctol) {
 | |
| 	i__1 = n2;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    d__1 = work[p] / sva[p];
 | |
| 	    dscal_(m, &d__1, &a[p * a_dim1 + 1], &c__1);
 | |
| /* L1998: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale the product of Jacobi rotations (assemble the fast rotations). */
 | |
| 
 | |
|     if (rsvec) {
 | |
| 	if (applv) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		dscal_(&mvl, &work[p], &v[p * v_dim1 + 1], &c__1);
 | |
| /* L2398: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		temp1 = 1. / dnrm2_(&mvl, &v[p * v_dim1 + 1], &c__1);
 | |
| 		dscal_(&mvl, &temp1, &v[p * v_dim1 + 1], &c__1);
 | |
| /* L2399: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling, if necessary (and possible). */
 | |
|     if (skl > 1. && sva[1] < big / skl || skl < 1. && sva[f2cmax(n2,1)] > sfmin /
 | |
| 	     skl) {
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    sva[p] = skl * sva[p];
 | |
| /* L2400: */
 | |
| 	}
 | |
| 	skl = 1.;
 | |
|     }
 | |
| 
 | |
|     work[1] = skl;
 | |
| /*     The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE */
 | |
| /*     then some of the singular values may overflow or underflow and */
 | |
| /*     the spectrum is given in this factored representation. */
 | |
| 
 | |
|     work[2] = (doublereal) n4;
 | |
| /*     N4 is the number of computed nonzero singular values of A. */
 | |
| 
 | |
|     work[3] = (doublereal) n2;
 | |
| /*     N2 is the number of singular values of A greater than SFMIN. */
 | |
| /*     If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers */
 | |
| /*     that may carry some information. */
 | |
| 
 | |
|     work[4] = (doublereal) i__;
 | |
| /*     i is the index of the last sweep before declaring convergence. */
 | |
| 
 | |
|     work[5] = mxaapq;
 | |
| /*     MXAAPQ is the largest absolute value of scaled pivots in the */
 | |
| /*     last sweep */
 | |
| 
 | |
|     work[6] = mxsinj;
 | |
| /*     MXSINJ is the largest absolute value of the sines of Jacobi angles */
 | |
| /*     in the last sweep */
 | |
| 
 | |
|     return;
 | |
| } /* dgesvj_ */
 | |
| 
 |