1467 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1467 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__6 = 6;
 | |
| static integer c__0 = 0;
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static doublereal c_b109 = 0.;
 | |
| 
 | |
| /* > \brief <b> DGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DGESVDX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvdx
 | |
| .f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvdx
 | |
| .f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvdx
 | |
| .f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*     SUBROUTINE DGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
 | |
| /*    $                    IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
 | |
| /*    $                    LWORK, IWORK, INFO ) */
 | |
| 
 | |
| 
 | |
| /*      CHARACTER          JOBU, JOBVT, RANGE */
 | |
| /*      INTEGER            IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
 | |
| /*      DOUBLE PRECISION   VL, VU */
 | |
| /*     INTEGER            IWORK( * ) */
 | |
| /*     DOUBLE PRECISION   A( LDA, * ), S( * ), U( LDU, * ), */
 | |
| /*    $                   VT( LDVT, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  DGESVDX computes the singular value decomposition (SVD) of a real */
 | |
| /* >  M-by-N matrix A, optionally computing the left and/or right singular */
 | |
| /* >  vectors. The SVD is written */
 | |
| /* > */
 | |
| /* >      A = U * SIGMA * transpose(V) */
 | |
| /* > */
 | |
| /* >  where SIGMA is an M-by-N matrix which is zero except for its */
 | |
| /* >  f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
 | |
| /* >  V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA */
 | |
| /* >  are the singular values of A; they are real and non-negative, and */
 | |
| /* >  are returned in descending order.  The first f2cmin(m,n) columns of */
 | |
| /* >  U and V are the left and right singular vectors of A. */
 | |
| /* > */
 | |
| /* >  DGESVDX uses an eigenvalue problem for obtaining the SVD, which */
 | |
| /* >  allows for the computation of a subset of singular values and */
 | |
| /* >  vectors. See DBDSVDX for details. */
 | |
| /* > */
 | |
| /* >  Note that the routine returns V**T, not V. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBU */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU is CHARACTER*1 */
 | |
| /* >          Specifies options for computing all or part of the matrix U: */
 | |
| /* >          = 'V':  the first f2cmin(m,n) columns of U (the left singular */
 | |
| /* >                  vectors) or as specified by RANGE are returned in */
 | |
| /* >                  the array U; */
 | |
| /* >          = 'N':  no columns of U (no left singular vectors) are */
 | |
| /* >                  computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVT */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVT is CHARACTER*1 */
 | |
| /* >           Specifies options for computing all or part of the matrix */
 | |
| /* >           V**T: */
 | |
| /* >           = 'V':  the first f2cmin(m,n) rows of V**T (the right singular */
 | |
| /* >                   vectors) or as specified by RANGE are returned in */
 | |
| /* >                   the array VT; */
 | |
| /* >           = 'N':  no rows of V**T (no right singular vectors) are */
 | |
| /* >                   computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RANGE */
 | |
| /* > \verbatim */
 | |
| /* >          RANGE is CHARACTER*1 */
 | |
| /* >          = 'A': all singular values will be found. */
 | |
| /* >          = 'V': all singular values in the half-open interval (VL,VU] */
 | |
| /* >                 will be found. */
 | |
| /* >          = 'I': the IL-th through IU-th singular values will be found. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the input matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the input matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit, the contents of A are destroyed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION */
 | |
| /* >          If RANGE='V', the lower bound of the interval to */
 | |
| /* >          be searched for singular values. VU > VL. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is DOUBLE PRECISION */
 | |
| /* >          If RANGE='V', the upper bound of the interval to */
 | |
| /* >          be searched for singular values. VU > VL. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IL */
 | |
| /* > \verbatim */
 | |
| /* >          IL is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          smallest singular value to be returned. */
 | |
| /* >          1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IU */
 | |
| /* > \verbatim */
 | |
| /* >          IU is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          largest singular value to be returned. */
 | |
| /* >          1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NS */
 | |
| /* > \verbatim */
 | |
| /* >          NS is INTEGER */
 | |
| /* >          The total number of singular values found, */
 | |
| /* >          0 <= NS <= f2cmin(M,N). */
 | |
| /* >          If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
 | |
| /* >          The singular values of A, sorted so that S(i) >= S(i+1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
 | |
| /* >          If JOBU = 'V', U contains columns of U (the left singular */
 | |
| /* >          vectors, stored columnwise) as specified by RANGE; if */
 | |
| /* >          JOBU = 'N', U is not referenced. */
 | |
| /* >          Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
 | |
| /* >          the exact value of NS is not known in advance and an upper */
 | |
| /* >          bound must be used. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U.  LDU >= 1; if */
 | |
| /* >          JOBU = 'V', LDU >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is DOUBLE PRECISION array, dimension (LDVT,N) */
 | |
| /* >          If JOBVT = 'V', VT contains the rows of V**T (the right singular */
 | |
| /* >          vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
 | |
| /* >          VT is not referenced. */
 | |
| /* >          Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
 | |
| /* >          the exact value of NS is not known in advance and an upper */
 | |
| /* >          bound must be used. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >          The leading dimension of the array VT.  LDVT >= 1; if */
 | |
| /* >          JOBVT = 'V', LDVT >= NS (see above). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* >          LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
 | |
| /* >          comments inside the code): */
 | |
| /* >             - PATH 1  (M much larger than N) */
 | |
| /* >             - PATH 1t (N much larger than M) */
 | |
| /* >          LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
 | |
| /* >          For good performance, LWORK should generally be larger. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (12*MIN(M,N)) */
 | |
| /* >          If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
 | |
| /* >          then IWORK contains the indices of the eigenvectors that failed */
 | |
| /* >          to converge in DBDSVDX/DSTEVX. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >     INFO is INTEGER */
 | |
| /* >           = 0:  successful exit */
 | |
| /* >           < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >           > 0:  if INFO = i, then i eigenvectors failed to converge */
 | |
| /* >                 in DBDSVDX/DSTEVX. */
 | |
| /* >                 if INFO = N*2 + 1, an internal error occurred in */
 | |
| /* >                 DBDSVDX */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup doubleGEsing */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dgesvdx_(char *jobu, char *jobvt, char *range, integer *
 | |
| 	m, integer *n, doublereal *a, integer *lda, doublereal *vl, 
 | |
| 	doublereal *vu, integer *il, integer *iu, integer *ns, doublereal *s, 
 | |
| 	doublereal *u, integer *ldu, doublereal *vt, integer *ldvt, 
 | |
| 	doublereal *work, integer *lwork, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     address a__1[2];
 | |
|     integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2], 
 | |
| 	    i__2, i__3;
 | |
|     char ch__1[2];
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer iscl;
 | |
|     logical alls, inds;
 | |
|     integer ilqf;
 | |
|     doublereal anrm;
 | |
|     integer ierr, iqrf, itau;
 | |
|     char jobz[1];
 | |
|     logical vals;
 | |
|     integer i__, j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iltgk, itemp, minmn;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer itaup, itauq, iutgk, itgkz, mnthr;
 | |
|     logical wantu;
 | |
|     integer id, ie;
 | |
|     extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
 | |
| 	     doublereal *, integer *, integer *);
 | |
|     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *);
 | |
|     extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 | |
| 	    dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, integer *, doublereal *, integer *, integer *),
 | |
| 	     dgeqrf_(integer *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
 | |
| 	     integer *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *), dlaset_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     doublereal bignum, abstol;
 | |
|     extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *, integer *);
 | |
|     char rngtgk[1];
 | |
|     extern /* Subroutine */ void dormlq_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *, integer *), 
 | |
| 	    dormqr_(char *, char *, integer *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, integer *);
 | |
|     integer minwrk, maxwrk;
 | |
|     doublereal smlnum;
 | |
|     logical lquery, wantvt;
 | |
|     doublereal dum[1], eps;
 | |
|     extern /* Subroutine */ void dbdsvdx_(char *, char *, char *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | |
| 	     integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --s;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *ns = 0;
 | |
|     *info = 0;
 | |
|     abstol = dlamch_("S") * 2;
 | |
|     lquery = *lwork == -1;
 | |
|     minmn = f2cmin(*m,*n);
 | |
|     wantu = lsame_(jobu, "V");
 | |
|     wantvt = lsame_(jobvt, "V");
 | |
|     if (wantu || wantvt) {
 | |
| 	*(unsigned char *)jobz = 'V';
 | |
|     } else {
 | |
| 	*(unsigned char *)jobz = 'N';
 | |
|     }
 | |
|     alls = lsame_(range, "A");
 | |
|     vals = lsame_(range, "V");
 | |
|     inds = lsame_(range, "I");
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt, 
 | |
| 	    "N")) {
 | |
| 	*info = -2;
 | |
|     } else if (! (alls || vals || inds)) {
 | |
| 	*info = -3;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*m > *lda) {
 | |
| 	*info = -7;
 | |
|     } else if (minmn > 0) {
 | |
| 	if (vals) {
 | |
| 	    if (*vl < 0.) {
 | |
| 		*info = -8;
 | |
| 	    } else if (*vu <= *vl) {
 | |
| 		*info = -9;
 | |
| 	    }
 | |
| 	} else if (inds) {
 | |
| 	    if (*il < 1 || *il > f2cmax(1,minmn)) {
 | |
| 		*info = -10;
 | |
| 	    } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
 | |
| 		*info = -11;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*info == 0) {
 | |
| 	    if (wantu && *ldu < *m) {
 | |
| 		*info = -15;
 | |
| 	    } else if (wantvt) {
 | |
| 		if (inds) {
 | |
| 		    if (*ldvt < *iu - *il + 1) {
 | |
| 			*info = -17;
 | |
| 		    }
 | |
| 		} else if (*ldvt < minmn) {
 | |
| 		    *info = -17;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| /*     (Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*     minimal amount of workspace needed at that point in the code, */
 | |
| /*     as well as the preferred amount for good performance. */
 | |
| /*     NB refers to the optimal block size for the immediately */
 | |
| /*     following subroutine, as returned by ILAENV.) */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	minwrk = 1;
 | |
| 	maxwrk = 1;
 | |
| 	if (minmn > 0) {
 | |
| 	    if (*m >= *n) {
 | |
| /* Writing concatenation */
 | |
| 		i__1[0] = 1, a__1[0] = jobu;
 | |
| 		i__1[1] = 1, a__1[1] = jobvt;
 | |
| 		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
 | |
| 		mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
 | |
| 			ftnlen)6, (ftnlen)2);
 | |
| 		if (*m >= mnthr) {
 | |
| 
 | |
| /*                 Path 1 (M much larger than N) */
 | |
| 
 | |
| 		    maxwrk = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
 | |
| 			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = *n * (*n + 5) + (*n << 1) * ilaenv_(
 | |
| 			    &c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
 | |
| 			    6, (ftnlen)1);
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    if (wantu) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n * 
 | |
| 				ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    if (wantvt) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n * 
 | |
| 				ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    minwrk = *n * (*n * 3 + 20);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Path 2 (M at least N, but not much larger) */
 | |
| 
 | |
| 		    maxwrk = (*n << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD", 
 | |
| 			    " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 		    if (wantu) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n * 
 | |
| 				ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    if (wantvt) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n * 
 | |
| 				ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n * ((*n << 1) + 19), i__3 = (*n << 2) + *m;
 | |
| 		    minwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 	    } else {
 | |
| /* Writing concatenation */
 | |
| 		i__1[0] = 1, a__1[0] = jobu;
 | |
| 		i__1[1] = 1, a__1[1] = jobvt;
 | |
| 		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
 | |
| 		mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
 | |
| 			ftnlen)6, (ftnlen)2);
 | |
| 		if (*n >= mnthr) {
 | |
| 
 | |
| /*                 Path 1t (N much larger than M) */
 | |
| 
 | |
| 		    maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
 | |
| 			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = *m * (*m + 5) + (*m << 1) * ilaenv_(
 | |
| 			    &c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
 | |
| 			    6, (ftnlen)1);
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    if (wantu) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m * 
 | |
| 				ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    if (wantvt) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m * 
 | |
| 				ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    minwrk = *m * (*m * 3 + 20);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Path 2t (N at least M, but not much larger) */
 | |
| 
 | |
| 		    maxwrk = (*m << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD", 
 | |
| 			    " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 		    if (wantu) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m * 
 | |
| 				ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    if (wantvt) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m * 
 | |
| 				ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
 | |
| 				c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *m * ((*m << 1) + 19), i__3 = (*m << 2) + *n;
 | |
| 		    minwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	maxwrk = f2cmax(maxwrk,minwrk);
 | |
| 	work[1] = (doublereal) maxwrk;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -19;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__2 = -(*info);
 | |
| 	xerbla_("DGESVDX", &i__2, (ftnlen)7);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Set singular values indices accord to RANGE. */
 | |
| 
 | |
|     if (alls) {
 | |
| 	*(unsigned char *)rngtgk = 'I';
 | |
| 	iltgk = 1;
 | |
| 	iutgk = f2cmin(*m,*n);
 | |
|     } else if (inds) {
 | |
| 	*(unsigned char *)rngtgk = 'I';
 | |
| 	iltgk = *il;
 | |
| 	iutgk = *iu;
 | |
|     } else {
 | |
| 	*(unsigned char *)rngtgk = 'V';
 | |
| 	iltgk = 0;
 | |
| 	iutgk = 0;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = dlamch_("P");
 | |
|     smlnum = sqrt(dlamch_("S")) / eps;
 | |
|     bignum = 1. / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
 | |
|     iscl = 0;
 | |
|     if (anrm > 0. && anrm < smlnum) {
 | |
| 	iscl = 1;
 | |
| 	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
 | |
| 		info);
 | |
|     } else if (anrm > bignum) {
 | |
| 	iscl = 1;
 | |
| 	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
 | |
| 		info);
 | |
|     }
 | |
| 
 | |
|     if (*m >= *n) {
 | |
| 
 | |
| /*        A has at least as many rows as columns. If A has sufficiently */
 | |
| /*        more rows than columns, first reduce A using the QR */
 | |
| /*        decomposition. */
 | |
| 
 | |
| 	if (*m >= mnthr) {
 | |
| 
 | |
| /*           Path 1 (M much larger than N): */
 | |
| /*           A = Q * R = Q * ( QB * B * PB**T ) */
 | |
| /*                     = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
 | |
| /*           U = Q * QB * UB; V**T = VB**T * PB**T */
 | |
| 
 | |
| /*           Compute A=Q*R */
 | |
| /*           (Workspace: need 2*N, prefer N+N*NB) */
 | |
| 
 | |
| 	    itau = 1;
 | |
| 	    itemp = itau + *n;
 | |
| 	    i__2 = *lwork - itemp + 1;
 | |
| 	    dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
 | |
| 		     info);
 | |
| 
 | |
| /*           Copy R into WORK and bidiagonalize it: */
 | |
| /*           (Workspace: need N*N+5*N, prefer N*N+4*N+2*N*NB) */
 | |
| 
 | |
| 	    iqrf = itemp;
 | |
| 	    id = iqrf + *n * *n;
 | |
| 	    ie = id + *n;
 | |
| 	    itauq = ie + *n;
 | |
| 	    itaup = itauq + *n;
 | |
| 	    itemp = itaup + *n;
 | |
| 	    dlacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
 | |
| 	    i__2 = *n - 1;
 | |
| 	    i__3 = *n - 1;
 | |
| 	    dlaset_("L", &i__2, &i__3, &c_b109, &c_b109, &work[iqrf + 1], n);
 | |
| 	    i__2 = *lwork - itemp + 1;
 | |
| 	    dgebrd_(n, n, &work[iqrf], n, &work[id], &work[ie], &work[itauq], 
 | |
| 		    &work[itaup], &work[itemp], &i__2, info);
 | |
| 
 | |
| /*           Solve eigenvalue problem TGK*Z=Z*S. */
 | |
| /*           (Workspace: need 14*N + 2*N*(N+1)) */
 | |
| 
 | |
| 	    itgkz = itemp;
 | |
| 	    itemp = itgkz + *n * ((*n << 1) + 1);
 | |
| 	    i__2 = *n << 1;
 | |
| 	    dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
 | |
| 		    iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
 | |
| 		    itemp], &iwork[1], info);
 | |
| 
 | |
| /*           If needed, compute left singular vectors. */
 | |
| 
 | |
| 	    if (wantu) {
 | |
| 		j = itgkz;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
 | |
| 		    j += *n << 1;
 | |
| 		}
 | |
| 		i__2 = *m - *n;
 | |
| 		dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
 | |
| 			 ldu);
 | |
| 
 | |
| /*              Call DORMBR to compute QB*UB. */
 | |
| /*              (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
 | |
| 			 &u[u_offset], ldu, &work[itemp], &i__2, info);
 | |
| 
 | |
| /*              Call DORMQR to compute Q*(QB*UB). */
 | |
| /*              (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
 | |
| 			u[u_offset], ldu, &work[itemp], &i__2, info);
 | |
| 	    }
 | |
| 
 | |
| /*           If needed, compute right singular vectors. */
 | |
| 
 | |
| 	    if (wantvt) {
 | |
| 		j = itgkz + *n;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
 | |
| 		    j += *n << 1;
 | |
| 		}
 | |
| 
 | |
| /*              Call DORMBR to compute VB**T * PB**T */
 | |
| /*              (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("P", "R", "T", ns, n, n, &work[iqrf], n, &work[itaup],
 | |
| 			 &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Path 2 (M at least N, but not much larger) */
 | |
| /*           Reduce A to bidiagonal form without QR decomposition */
 | |
| /*           A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
 | |
| /*           U = QB * UB; V**T = VB**T * PB**T */
 | |
| 
 | |
| /*           Bidiagonalize A */
 | |
| /*           (Workspace: need 4*N+M, prefer 4*N+(M+N)*NB) */
 | |
| 
 | |
| 	    id = 1;
 | |
| 	    ie = id + *n;
 | |
| 	    itauq = ie + *n;
 | |
| 	    itaup = itauq + *n;
 | |
| 	    itemp = itaup + *n;
 | |
| 	    i__2 = *lwork - itemp + 1;
 | |
| 	    dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
 | |
| 		    itauq], &work[itaup], &work[itemp], &i__2, info);
 | |
| 
 | |
| /*           Solve eigenvalue problem TGK*Z=Z*S. */
 | |
| /*           (Workspace: need 14*N + 2*N*(N+1)) */
 | |
| 
 | |
| 	    itgkz = itemp;
 | |
| 	    itemp = itgkz + *n * ((*n << 1) + 1);
 | |
| 	    i__2 = *n << 1;
 | |
| 	    dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
 | |
| 		    iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
 | |
| 		    itemp], &iwork[1], info);
 | |
| 
 | |
| /*           If needed, compute left singular vectors. */
 | |
| 
 | |
| 	    if (wantu) {
 | |
| 		j = itgkz;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
 | |
| 		    j += *n << 1;
 | |
| 		}
 | |
| 		i__2 = *m - *n;
 | |
| 		dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
 | |
| 			 ldu);
 | |
| 
 | |
| /*              Call DORMBR to compute QB*UB. */
 | |
| /*              (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
 | |
| 	    }
 | |
| 
 | |
| /*           If needed, compute right singular vectors. */
 | |
| 
 | |
| 	    if (wantvt) {
 | |
| 		j = itgkz + *n;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
 | |
| 		    j += *n << 1;
 | |
| 		}
 | |
| 
 | |
| /*              Call DORMBR to compute VB**T * PB**T */
 | |
| /*              (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("P", "R", "T", ns, n, n, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
 | |
| 			ierr);
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        A has more columns than rows. If A has sufficiently more */
 | |
| /*        columns than rows, first reduce A using the LQ decomposition. */
 | |
| 
 | |
| 	if (*n >= mnthr) {
 | |
| 
 | |
| /*           Path 1t (N much larger than M): */
 | |
| /*           A = L * Q = ( QB * B * PB**T ) * Q */
 | |
| /*                     = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
 | |
| /*           U = QB * UB ; V**T = VB**T * PB**T * Q */
 | |
| 
 | |
| /*           Compute A=L*Q */
 | |
| /*           (Workspace: need 2*M, prefer M+M*NB) */
 | |
| 
 | |
| 	    itau = 1;
 | |
| 	    itemp = itau + *m;
 | |
| 	    i__2 = *lwork - itemp + 1;
 | |
| 	    dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
 | |
| 		     info);
 | |
| /*           Copy L into WORK and bidiagonalize it: */
 | |
| /*           (Workspace in WORK( ITEMP ): need M*M+5*N, prefer M*M+4*M+2*M*NB) */
 | |
| 
 | |
| 	    ilqf = itemp;
 | |
| 	    id = ilqf + *m * *m;
 | |
| 	    ie = id + *m;
 | |
| 	    itauq = ie + *m;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    itemp = itaup + *m;
 | |
| 	    dlacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
 | |
| 	    i__2 = *m - 1;
 | |
| 	    i__3 = *m - 1;
 | |
| 	    dlaset_("U", &i__2, &i__3, &c_b109, &c_b109, &work[ilqf + *m], m);
 | |
| 	    i__2 = *lwork - itemp + 1;
 | |
| 	    dgebrd_(m, m, &work[ilqf], m, &work[id], &work[ie], &work[itauq], 
 | |
| 		    &work[itaup], &work[itemp], &i__2, info);
 | |
| 
 | |
| /*           Solve eigenvalue problem TGK*Z=Z*S. */
 | |
| /*           (Workspace: need 2*M*M+14*M) */
 | |
| 
 | |
| 	    itgkz = itemp;
 | |
| 	    itemp = itgkz + *m * ((*m << 1) + 1);
 | |
| 	    i__2 = *m << 1;
 | |
| 	    dbdsvdx_("U", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
 | |
| 		    iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
 | |
| 		    itemp], &iwork[1], info);
 | |
| 
 | |
| /*           If needed, compute left singular vectors. */
 | |
| 
 | |
| 	    if (wantu) {
 | |
| 		j = itgkz;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
 | |
| 		    j += *m << 1;
 | |
| 		}
 | |
| 
 | |
| /*              Call DORMBR to compute QB*UB. */
 | |
| /*              (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
 | |
| 			 &u[u_offset], ldu, &work[itemp], &i__2, info);
 | |
| 	    }
 | |
| 
 | |
| /*           If needed, compute right singular vectors. */
 | |
| 
 | |
| 	    if (wantvt) {
 | |
| 		j = itgkz + *m;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
 | |
| 		    j += *m << 1;
 | |
| 		}
 | |
| 		i__2 = *n - *m;
 | |
| 		dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) * 
 | |
| 			vt_dim1 + 1], ldvt);
 | |
| 
 | |
| /*              Call DORMBR to compute (VB**T)*(PB**T) */
 | |
| /*              (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("P", "R", "T", ns, m, m, &work[ilqf], m, &work[itaup],
 | |
| 			 &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
 | |
| 
 | |
| /*              Call DORMLQ to compute ((VB**T)*(PB**T))*Q. */
 | |
| /*              (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
 | |
| 			vt[vt_offset], ldvt, &work[itemp], &i__2, info);
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Path 2t (N greater than M, but not much larger) */
 | |
| /*           Reduce to bidiagonal form without LQ decomposition */
 | |
| /*           A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
 | |
| /*           U = QB * UB; V**T = VB**T * PB**T */
 | |
| 
 | |
| /*           Bidiagonalize A */
 | |
| /*           (Workspace: need 4*M+N, prefer 4*M+(M+N)*NB) */
 | |
| 
 | |
| 	    id = 1;
 | |
| 	    ie = id + *m;
 | |
| 	    itauq = ie + *m;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    itemp = itaup + *m;
 | |
| 	    i__2 = *lwork - itemp + 1;
 | |
| 	    dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
 | |
| 		    itauq], &work[itaup], &work[itemp], &i__2, info);
 | |
| 
 | |
| /*           Solve eigenvalue problem TGK*Z=Z*S. */
 | |
| /*           (Workspace: need 2*M*M+14*M) */
 | |
| 
 | |
| 	    itgkz = itemp;
 | |
| 	    itemp = itgkz + *m * ((*m << 1) + 1);
 | |
| 	    i__2 = *m << 1;
 | |
| 	    dbdsvdx_("L", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
 | |
| 		    iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
 | |
| 		    itemp], &iwork[1], info);
 | |
| 
 | |
| /*           If needed, compute left singular vectors. */
 | |
| 
 | |
| 	    if (wantu) {
 | |
| 		j = itgkz;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
 | |
| 		    j += *m << 1;
 | |
| 		}
 | |
| 
 | |
| /*              Call DORMBR to compute QB*UB. */
 | |
| /*              (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
 | |
| 	    }
 | |
| 
 | |
| /*           If needed, compute right singular vectors. */
 | |
| 
 | |
| 	    if (wantvt) {
 | |
| 		j = itgkz + *m;
 | |
| 		i__2 = *ns;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
 | |
| 		    j += *m << 1;
 | |
| 		}
 | |
| 		i__2 = *n - *m;
 | |
| 		dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) * 
 | |
| 			vt_dim1 + 1], ldvt);
 | |
| 
 | |
| /*              Call DORMBR to compute VB**T * PB**T */
 | |
| /*              (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
 | |
| 
 | |
| 		i__2 = *lwork - itemp + 1;
 | |
| 		dormbr_("P", "R", "T", ns, n, m, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, 
 | |
| 			info);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling if necessary */
 | |
| 
 | |
|     if (iscl == 1) {
 | |
| 	if (anrm > bignum) {
 | |
| 	    dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		    minmn, info);
 | |
| 	}
 | |
| 	if (anrm < smlnum) {
 | |
| 	    dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		    minmn, info);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Return optimal workspace in WORK(1) */
 | |
| 
 | |
|     work[1] = (doublereal) maxwrk;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DGESVDX */
 | |
| 
 | |
| } /* dgesvdx_ */
 | |
| 
 |