436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGERFS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGERFS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerfs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerfs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerfs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
 | |
| *                          X, LDX, FERR, BERR, WORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 | |
| *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGERFS improves the computed solution to a system of linear
 | |
| *> equations and provides error bounds and backward error estimates for
 | |
| *> the solution.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the form of the system of equations:
 | |
| *>          = 'N':  A * X = B     (No transpose)
 | |
| *>          = 'T':  A**T * X = B  (Transpose)
 | |
| *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices B and X.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The original N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
 | |
| *>          The factors L and U from the factorization A = P*L*U
 | |
| *>          as computed by DGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>          The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices from DGETRF; for 1<=i<=N, row i of the
 | |
| *>          matrix was interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          The right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          On entry, the solution matrix X, as computed by DGETRS.
 | |
| *>          On exit, the improved solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The estimated forward error bound for each solution vector
 | |
| *>          X(j) (the j-th column of the solution matrix X).
 | |
| *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | |
| *>          is an estimated upper bound for the magnitude of the largest
 | |
| *>          element in (X(j) - XTRUE) divided by the magnitude of the
 | |
| *>          largest element in X(j).  The estimate is as reliable as
 | |
| *>          the estimate for RCOND, and is almost always a slight
 | |
| *>          overestimate of the true error.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector X(j) (i.e., the smallest relative change in
 | |
| *>          any element of A or B that makes X(j) an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  ITMAX is the maximum number of steps of iterative refinement.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
 | |
|      $                   X, LDX, FERR, BERR, WORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 | |
|      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            ITMAX
 | |
|       PARAMETER          ( ITMAX = 5 )
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
|       DOUBLE PRECISION   TWO
 | |
|       PARAMETER          ( TWO = 2.0D+0 )
 | |
|       DOUBLE PRECISION   THREE
 | |
|       PARAMETER          ( THREE = 3.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN
 | |
|       CHARACTER          TRANST
 | |
|       INTEGER            COUNT, I, J, K, KASE, NZ
 | |
|       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DCOPY, DGEMV, DGETRS, DLACN2, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           LSAME, DLAMCH
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | |
|      $    LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGERFS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|          DO 10 J = 1, NRHS
 | |
|             FERR( J ) = ZERO
 | |
|             BERR( J ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
|          TRANST = 'T'
 | |
|       ELSE
 | |
|          TRANST = 'N'
 | |
|       END IF
 | |
| *
 | |
| *     NZ = maximum number of nonzero elements in each row of A, plus 1
 | |
| *
 | |
|       NZ = N + 1
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       SAFE1 = NZ*SAFMIN
 | |
|       SAFE2 = SAFE1 / EPS
 | |
| *
 | |
| *     Do for each right hand side
 | |
| *
 | |
|       DO 140 J = 1, NRHS
 | |
| *
 | |
|          COUNT = 1
 | |
|          LSTRES = THREE
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Loop until stopping criterion is satisfied.
 | |
| *
 | |
| *        Compute residual R = B - op(A) * X,
 | |
| *        where op(A) = A, A**T, or A**H, depending on TRANS.
 | |
| *
 | |
|          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
 | |
|          CALL DGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
 | |
|      $               WORK( N+1 ), 1 )
 | |
| *
 | |
| *        Compute componentwise relative backward error from formula
 | |
| *
 | |
| *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
 | |
| *
 | |
| *        where abs(Z) is the componentwise absolute value of the matrix
 | |
| *        or vector Z.  If the i-th component of the denominator is less
 | |
| *        than SAFE2, then SAFE1 is added to the i-th components of the
 | |
| *        numerator and denominator before dividing.
 | |
| *
 | |
|          DO 30 I = 1, N
 | |
|             WORK( I ) = ABS( B( I, J ) )
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Compute abs(op(A))*abs(X) + abs(B).
 | |
| *
 | |
|          IF( NOTRAN ) THEN
 | |
|             DO 50 K = 1, N
 | |
|                XK = ABS( X( K, J ) )
 | |
|                DO 40 I = 1, N
 | |
|                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
 | |
|    40          CONTINUE
 | |
|    50       CONTINUE
 | |
|          ELSE
 | |
|             DO 70 K = 1, N
 | |
|                S = ZERO
 | |
|                DO 60 I = 1, N
 | |
|                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
 | |
|    60          CONTINUE
 | |
|                WORK( K ) = WORK( K ) + S
 | |
|    70       CONTINUE
 | |
|          END IF
 | |
|          S = ZERO
 | |
|          DO 80 I = 1, N
 | |
|             IF( WORK( I ).GT.SAFE2 ) THEN
 | |
|                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
 | |
|             ELSE
 | |
|                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
 | |
|      $             ( WORK( I )+SAFE1 ) )
 | |
|             END IF
 | |
|    80    CONTINUE
 | |
|          BERR( J ) = S
 | |
| *
 | |
| *        Test stopping criterion. Continue iterating if
 | |
| *           1) The residual BERR(J) is larger than machine epsilon, and
 | |
| *           2) BERR(J) decreased by at least a factor of 2 during the
 | |
| *              last iteration, and
 | |
| *           3) At most ITMAX iterations tried.
 | |
| *
 | |
|          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
 | |
|      $       COUNT.LE.ITMAX ) THEN
 | |
| *
 | |
| *           Update solution and try again.
 | |
| *
 | |
|             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
 | |
|      $                   INFO )
 | |
|             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
 | |
|             LSTRES = BERR( J )
 | |
|             COUNT = COUNT + 1
 | |
|             GO TO 20
 | |
|          END IF
 | |
| *
 | |
| *        Bound error from formula
 | |
| *
 | |
| *        norm(X - XTRUE) / norm(X) .le. FERR =
 | |
| *        norm( abs(inv(op(A)))*
 | |
| *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
 | |
| *
 | |
| *        where
 | |
| *          norm(Z) is the magnitude of the largest component of Z
 | |
| *          inv(op(A)) is the inverse of op(A)
 | |
| *          abs(Z) is the componentwise absolute value of the matrix or
 | |
| *             vector Z
 | |
| *          NZ is the maximum number of nonzeros in any row of A, plus 1
 | |
| *          EPS is machine epsilon
 | |
| *
 | |
| *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
 | |
| *        is incremented by SAFE1 if the i-th component of
 | |
| *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
 | |
| *
 | |
| *        Use DLACN2 to estimate the infinity-norm of the matrix
 | |
| *           inv(op(A)) * diag(W),
 | |
| *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
 | |
| *
 | |
|          DO 90 I = 1, N
 | |
|             IF( WORK( I ).GT.SAFE2 ) THEN
 | |
|                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
 | |
|             ELSE
 | |
|                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
 | |
|             END IF
 | |
|    90    CONTINUE
 | |
| *
 | |
|          KASE = 0
 | |
|   100    CONTINUE
 | |
|          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
 | |
|      $                KASE, ISAVE )
 | |
|          IF( KASE.NE.0 ) THEN
 | |
|             IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *              Multiply by diag(W)*inv(op(A)**T).
 | |
| *
 | |
|                CALL DGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK( N+1 ),
 | |
|      $                      N, INFO )
 | |
|                DO 110 I = 1, N
 | |
|                   WORK( N+I ) = WORK( I )*WORK( N+I )
 | |
|   110          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Multiply by inv(op(A))*diag(W).
 | |
| *
 | |
|                DO 120 I = 1, N
 | |
|                   WORK( N+I ) = WORK( I )*WORK( N+I )
 | |
|   120          CONTINUE
 | |
|                CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
 | |
|      $                      INFO )
 | |
|             END IF
 | |
|             GO TO 100
 | |
|          END IF
 | |
| *
 | |
| *        Normalize error.
 | |
| *
 | |
|          LSTRES = ZERO
 | |
|          DO 130 I = 1, N
 | |
|             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
 | |
|   130    CONTINUE
 | |
|          IF( LSTRES.NE.ZERO )
 | |
|      $      FERR( J ) = FERR( J ) / LSTRES
 | |
| *
 | |
|   140 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGERFS
 | |
| *
 | |
|       END
 |