225 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEQRT2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEQRT2( M, N, A, LDA, T, LDT, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER   INFO, LDA, LDT, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGEQRT2 computes a QR factorization of a real M-by-N matrix A,
 | |
| *> using the compact WY representation of Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the real M-by-N matrix A.  On exit, the elements on and
 | |
| *>          above the diagonal contain the N-by-N upper triangular matrix R; the
 | |
| *>          elements below the diagonal are the columns of V.  See below for
 | |
| *>          further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is DOUBLE PRECISION array, dimension (LDT,N)
 | |
| *>          The N-by-N upper triangular factor of the block reflector.
 | |
| *>          The elements on and above the diagonal contain the block
 | |
| *>          reflector T; the elements below the diagonal are not used.
 | |
| *>          See below for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix V stores the elementary reflectors H(i) in the i-th column
 | |
| *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
 | |
| *>
 | |
| *>               V = (  1       )
 | |
| *>                   ( v1  1    )
 | |
| *>                   ( v1 v2  1 )
 | |
| *>                   ( v1 v2 v3 )
 | |
| *>                   ( v1 v2 v3 )
 | |
| *>
 | |
| *>  where the vi's represent the vectors which define H(i), which are returned
 | |
| *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
 | |
| *>  block reflector H is then given by
 | |
| *>
 | |
| *>               H = I - V * T * V**T
 | |
| *>
 | |
| *>  where V**T is the transpose of V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEQRT2( M, N, A, LDA, T, LDT, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER   INFO, LDA, LDT, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION  ONE, ZERO
 | |
|       PARAMETER( ONE = 1.0D+00, ZERO = 0.0D+00 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER   I, K
 | |
|       DOUBLE PRECISION   AII, ALPHA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL  DLARFG, DGEMV, DGER, DTRMV, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.N ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEQRT2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       K = MIN( M, N )
 | |
| *
 | |
|       DO I = 1, K
 | |
| *
 | |
| *        Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
 | |
| *
 | |
|          CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
 | |
|      $                T( I, 1 ) )
 | |
|          IF( I.LT.N ) THEN
 | |
| *
 | |
| *           Apply H(i) to A(I:M,I+1:N) from the left
 | |
| *
 | |
|             AII = A( I, I )
 | |
|             A( I, I ) = ONE
 | |
| *
 | |
| *           W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
 | |
| *
 | |
|             CALL DGEMV( 'T',M-I+1, N-I, ONE, A( I, I+1 ), LDA,
 | |
|      $                  A( I, I ), 1, ZERO, T( 1, N ), 1 )
 | |
| *
 | |
| *           A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
 | |
| *
 | |
|             ALPHA = -(T( I, 1 ))
 | |
|             CALL DGER( M-I+1, N-I, ALPHA, A( I, I ), 1,
 | |
|      $           T( 1, N ), 1, A( I, I+1 ), LDA )
 | |
|             A( I, I ) = AII
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
|       DO I = 2, N
 | |
|          AII = A( I, I )
 | |
|          A( I, I ) = ONE
 | |
| *
 | |
| *        T(1:I-1,I) := alpha * A(I:M,1:I-1)**T * A(I:M,I)
 | |
| *
 | |
|          ALPHA = -T( I, 1 )
 | |
|          CALL DGEMV( 'T', M-I+1, I-1, ALPHA, A( I, 1 ), LDA,
 | |
|      $               A( I, I ), 1, ZERO, T( 1, I ), 1 )
 | |
|          A( I, I ) = AII
 | |
| *
 | |
| *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
 | |
| *
 | |
|          CALL DTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
 | |
| *
 | |
| *           T(I,I) = tau(I)
 | |
| *
 | |
|             T( I, I ) = T( I, 1 )
 | |
|             T( I, 1) = ZERO
 | |
|       END DO
 | |
| 
 | |
| *
 | |
| *     End of DGEQRT2
 | |
| *
 | |
|       END
 |