289 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGEMQRT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEMQRT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgemqrt.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgemqrt.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgemqrt.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT,
 | |
| *                          C, LDC, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER SIDE, TRANS
 | |
| *       INTEGER   INFO, K, LDV, LDC, M, N, NB, LDT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGEMQRT overwrites the general real M-by-N matrix C with
 | |
| *>
 | |
| *>                 SIDE = 'L'     SIDE = 'R'
 | |
| *> TRANS = 'N':      Q C            C Q
 | |
| *> TRANS = 'T':   Q**T C            C Q**T
 | |
| *>
 | |
| *> where Q is a real orthogonal matrix defined as the product of K
 | |
| *> elementary reflectors:
 | |
| *>
 | |
| *>       Q = H(1) H(2) . . . H(K) = I - V T V**T
 | |
| *>
 | |
| *> generated using the compact WY representation as returned by DGEQRT.
 | |
| *>
 | |
| *> Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q or Q**T from the Left;
 | |
| *>          = 'R': apply Q or Q**T from the Right.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, apply Q;
 | |
| *>          = 'C':  Transpose, apply Q**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines
 | |
| *>          the matrix Q.
 | |
| *>          If SIDE = 'L', M >= K >= 0;
 | |
| *>          if SIDE = 'R', N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The block size used for the storage of T.  K >= NB >= 1.
 | |
| *>          This must be the same value of NB used to generate T
 | |
| *>          in DGEQRT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is DOUBLE PRECISION array, dimension (LDV,K)
 | |
| *>          The i-th column must contain the vector which defines the
 | |
| *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | |
| *>          DGEQRT in the first K columns of its array argument A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V.
 | |
| *>          If SIDE = 'L', LDA >= max(1,M);
 | |
| *>          if SIDE = 'R', LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is DOUBLE PRECISION array, dimension (LDT,K)
 | |
| *>          The upper triangular factors of the block reflectors
 | |
| *>          as returned by DGEQRT, stored as a NB-by-N matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array. The dimension of
 | |
| *>          WORK is N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEMQRT( SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT,
 | |
|      $                   C, LDC, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER SIDE, TRANS
 | |
|       INTEGER   INFO, K, LDV, LDC, M, N, NB, LDT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
 | |
|       INTEGER            I, IB, LDWORK, KF, Q
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, DLARFB
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     .. Test the input arguments ..
 | |
| *
 | |
|       INFO   = 0
 | |
|       LEFT   = LSAME( SIDE,  'L' )
 | |
|       RIGHT  = LSAME( SIDE,  'R' )
 | |
|       TRAN   = LSAME( TRANS, 'T' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          LDWORK = MAX( 1, N )
 | |
|          Q = M
 | |
|       ELSE IF ( RIGHT ) THEN
 | |
|          LDWORK = MAX( 1, M )
 | |
|          Q = N
 | |
|       END IF
 | |
|       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.Q ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0)) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDV.LT.MAX( 1, Q ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDT.LT.NB ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEMQRT', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     .. Quick return if possible ..
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
 | |
| *
 | |
|       IF( LEFT .AND. TRAN ) THEN
 | |
| *
 | |
|          DO I = 1, K, NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             CALL DLARFB( 'L', 'T', 'F', 'C', M-I+1, N, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( I, 1 ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( RIGHT .AND. NOTRAN ) THEN
 | |
| *
 | |
|          DO I = 1, K, NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             CALL DLARFB( 'R', 'N', 'F', 'C', M, N-I+1, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( 1, I ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( LEFT .AND. NOTRAN ) THEN
 | |
| *
 | |
|          KF = ((K-1)/NB)*NB+1
 | |
|          DO I = KF, 1, -NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             CALL DLARFB( 'L', 'N', 'F', 'C', M-I+1, N, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( I, 1 ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( RIGHT .AND. TRAN ) THEN
 | |
| *
 | |
|          KF = ((K-1)/NB)*NB+1
 | |
|          DO I = KF, 1, -NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             CALL DLARFB( 'R', 'T', 'F', 'C', M, N-I+1, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( 1, I ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEMQRT
 | |
| *
 | |
|       END
 |