533 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			533 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEES + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
 | |
| *                         VS, LDVS, WORK, LWORK, BWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVS, SORT
 | |
| *       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            BWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
 | |
| *      $                   WR( * )
 | |
| *       ..
 | |
| *       .. Function Arguments ..
 | |
| *       LOGICAL            SELECT
 | |
| *       EXTERNAL           SELECT
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGEES computes for an N-by-N real nonsymmetric matrix A, the
 | |
| *> eigenvalues, the real Schur form T, and, optionally, the matrix of
 | |
| *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
 | |
| *>
 | |
| *> Optionally, it also orders the eigenvalues on the diagonal of the
 | |
| *> real Schur form so that selected eigenvalues are at the top left.
 | |
| *> The leading columns of Z then form an orthonormal basis for the
 | |
| *> invariant subspace corresponding to the selected eigenvalues.
 | |
| *>
 | |
| *> A matrix is in real Schur form if it is upper quasi-triangular with
 | |
| *> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
 | |
| *> form
 | |
| *>         [  a  b  ]
 | |
| *>         [  c  a  ]
 | |
| *>
 | |
| *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVS
 | |
| *> \verbatim
 | |
| *>          JOBVS is CHARACTER*1
 | |
| *>          = 'N': Schur vectors are not computed;
 | |
| *>          = 'V': Schur vectors are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SORT
 | |
| *> \verbatim
 | |
| *>          SORT is CHARACTER*1
 | |
| *>          Specifies whether or not to order the eigenvalues on the
 | |
| *>          diagonal of the Schur form.
 | |
| *>          = 'N': Eigenvalues are not ordered;
 | |
| *>          = 'S': Eigenvalues are ordered (see SELECT).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
 | |
| *>          SELECT must be declared EXTERNAL in the calling subroutine.
 | |
| *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
 | |
| *>          to the top left of the Schur form.
 | |
| *>          If SORT = 'N', SELECT is not referenced.
 | |
| *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
 | |
| *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
 | |
| *>          conjugate pair of eigenvalues is selected, then both complex
 | |
| *>          eigenvalues are selected.
 | |
| *>          Note that a selected complex eigenvalue may no longer
 | |
| *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
 | |
| *>          ordering may change the value of complex eigenvalues
 | |
| *>          (especially if the eigenvalue is ill-conditioned); in this
 | |
| *>          case INFO is set to N+2 (see INFO below).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the N-by-N matrix A.
 | |
| *>          On exit, A has been overwritten by its real Schur form T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SDIM
 | |
| *> \verbatim
 | |
| *>          SDIM is INTEGER
 | |
| *>          If SORT = 'N', SDIM = 0.
 | |
| *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
 | |
| *>                         for which SELECT is true. (Complex conjugate
 | |
| *>                         pairs for which SELECT is true for either
 | |
| *>                         eigenvalue count as 2.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION array, dimension (N)
 | |
| *>          WR and WI contain the real and imaginary parts,
 | |
| *>          respectively, of the computed eigenvalues in the same order
 | |
| *>          that they appear on the diagonal of the output Schur form T.
 | |
| *>          Complex conjugate pairs of eigenvalues will appear
 | |
| *>          consecutively with the eigenvalue having the positive
 | |
| *>          imaginary part first.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VS
 | |
| *> \verbatim
 | |
| *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
 | |
| *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
 | |
| *>          vectors.
 | |
| *>          If JOBVS = 'N', VS is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVS
 | |
| *> \verbatim
 | |
| *>          LDVS is INTEGER
 | |
| *>          The leading dimension of the array VS.  LDVS >= 1; if
 | |
| *>          JOBVS = 'V', LDVS >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWORK
 | |
| *> \verbatim
 | |
| *>          BWORK is LOGICAL array, dimension (N)
 | |
| *>          Not referenced if SORT = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0: if INFO = i, and i is
 | |
| *>             <= N: the QR algorithm failed to compute all the
 | |
| *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
 | |
| *>                   contain those eigenvalues which have converged; if
 | |
| *>                   JOBVS = 'V', VS contains the matrix which reduces A
 | |
| *>                   to its partially converged Schur form.
 | |
| *>             = N+1: the eigenvalues could not be reordered because some
 | |
| *>                   eigenvalues were too close to separate (the problem
 | |
| *>                   is very ill-conditioned);
 | |
| *>             = N+2: after reordering, roundoff changed values of some
 | |
| *>                   complex eigenvalues so that leading eigenvalues in
 | |
| *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
 | |
| *>                   could also be caused by underflow due to scaling.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
 | |
|      $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVS, SORT
 | |
|       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            BWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
 | |
|      $                   WR( * )
 | |
| *     ..
 | |
| *     .. Function Arguments ..
 | |
|       LOGICAL            SELECT
 | |
|       EXTERNAL           SELECT
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
 | |
|      $                   WANTVS
 | |
|       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
 | |
|      $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUM( 1 )
 | |
|       DOUBLE PRECISION   DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
 | |
|      $                   DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       WANTVS = LSAME( JOBVS, 'V' )
 | |
|       WANTST = LSAME( SORT, 'S' )
 | |
|       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV.
 | |
| *       HSWORK refers to the workspace preferred by DHSEQR, as
 | |
| *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
 | |
| *       the worst case.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             MINWRK = 1
 | |
|             MAXWRK = 1
 | |
|          ELSE
 | |
|             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
 | |
|             MINWRK = 3*N
 | |
| *
 | |
|             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
 | |
|      $             WORK, -1, IEVAL )
 | |
|             HSWORK = INT( WORK( 1 ) )
 | |
| *
 | |
|             IF( .NOT.WANTVS ) THEN
 | |
|                MAXWRK = MAX( MAXWRK, N + HSWORK )
 | |
|             ELSE
 | |
|                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
 | |
|      $                       'DORGHR', ' ', N, 1, N, -1 ) )
 | |
|                MAXWRK = MAX( MAXWRK, N + HSWORK )
 | |
|             END IF
 | |
|          END IF
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -13
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEES ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          SDIM = 0
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
 | |
|       SCALEA = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          SCALEA = .TRUE.
 | |
|          CSCALE = SMLNUM
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          SCALEA = .TRUE.
 | |
|          CSCALE = BIGNUM
 | |
|       END IF
 | |
|       IF( SCALEA )
 | |
|      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Permute the matrix to make it more nearly triangular
 | |
| *     (Workspace: need N)
 | |
| *
 | |
|       IBAL = 1
 | |
|       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
 | |
| *
 | |
| *     Reduce to upper Hessenberg form
 | |
| *     (Workspace: need 3*N, prefer 2*N+N*NB)
 | |
| *
 | |
|       ITAU = N + IBAL
 | |
|       IWRK = N + ITAU
 | |
|       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
 | |
|      $             LWORK-IWRK+1, IERR )
 | |
| *
 | |
|       IF( WANTVS ) THEN
 | |
| *
 | |
| *        Copy Householder vectors to VS
 | |
| *
 | |
|          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
 | |
| *
 | |
| *        Generate orthogonal matrix in VS
 | |
| *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *
 | |
|          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
 | |
|      $                LWORK-IWRK+1, IERR )
 | |
|       END IF
 | |
| *
 | |
|       SDIM = 0
 | |
| *
 | |
| *     Perform QR iteration, accumulating Schur vectors in VS if desired
 | |
| *     (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | |
| *
 | |
|       IWRK = ITAU
 | |
|       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
 | |
|      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
 | |
|       IF( IEVAL.GT.0 )
 | |
|      $   INFO = IEVAL
 | |
| *
 | |
| *     Sort eigenvalues if desired
 | |
| *
 | |
|       IF( WANTST .AND. INFO.EQ.0 ) THEN
 | |
|          IF( SCALEA ) THEN
 | |
|             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
 | |
|             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
 | |
|          END IF
 | |
|          DO 10 I = 1, N
 | |
|             BWORK( I ) = SELECT( WR( I ), WI( I ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Reorder eigenvalues and transform Schur vectors
 | |
| *        (Workspace: none needed)
 | |
| *
 | |
|          CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
 | |
|      $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
 | |
|      $                ICOND )
 | |
|          IF( ICOND.GT.0 )
 | |
|      $      INFO = N + ICOND
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTVS ) THEN
 | |
| *
 | |
| *        Undo balancing
 | |
| *        (Workspace: need N)
 | |
| *
 | |
|          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
 | |
|      $                IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( SCALEA ) THEN
 | |
| *
 | |
| *        Undo scaling for the Schur form of A
 | |
| *
 | |
|          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
 | |
|          CALL DCOPY( N, A, LDA+1, WR, 1 )
 | |
|          IF( CSCALE.EQ.SMLNUM ) THEN
 | |
| *
 | |
| *           If scaling back towards underflow, adjust WI if an
 | |
| *           offdiagonal element of a 2-by-2 block in the Schur form
 | |
| *           underflows.
 | |
| *
 | |
|             IF( IEVAL.GT.0 ) THEN
 | |
|                I1 = IEVAL + 1
 | |
|                I2 = IHI - 1
 | |
|                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
 | |
|      $                      MAX( ILO-1, 1 ), IERR )
 | |
|             ELSE IF( WANTST ) THEN
 | |
|                I1 = 1
 | |
|                I2 = N - 1
 | |
|             ELSE
 | |
|                I1 = ILO
 | |
|                I2 = IHI - 1
 | |
|             END IF
 | |
|             INXT = I1 - 1
 | |
|             DO 20 I = I1, I2
 | |
|                IF( I.LT.INXT )
 | |
|      $            GO TO 20
 | |
|                IF( WI( I ).EQ.ZERO ) THEN
 | |
|                   INXT = I + 1
 | |
|                ELSE
 | |
|                   IF( A( I+1, I ).EQ.ZERO ) THEN
 | |
|                      WI( I ) = ZERO
 | |
|                      WI( I+1 ) = ZERO
 | |
|                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
 | |
|      $                     ZERO ) THEN
 | |
|                      WI( I ) = ZERO
 | |
|                      WI( I+1 ) = ZERO
 | |
|                      IF( I.GT.1 )
 | |
|      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
 | |
|                      IF( N.GT.I+1 )
 | |
|      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
 | |
|      $                              A( I+1, I+2 ), LDA )
 | |
|                      IF( WANTVS ) THEN
 | |
|                         CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
 | |
|                      END IF
 | |
|                      A( I, I+1 ) = A( I+1, I )
 | |
|                      A( I+1, I ) = ZERO
 | |
|                   END IF
 | |
|                   INXT = I + 2
 | |
|                END IF
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Undo scaling for the imaginary part of the eigenvalues
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
 | |
|      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTST .AND. INFO.EQ.0 ) THEN
 | |
| *
 | |
| *        Check if reordering successful
 | |
| *
 | |
|          LASTSL = .TRUE.
 | |
|          LST2SL = .TRUE.
 | |
|          SDIM = 0
 | |
|          IP = 0
 | |
|          DO 30 I = 1, N
 | |
|             CURSL = SELECT( WR( I ), WI( I ) )
 | |
|             IF( WI( I ).EQ.ZERO ) THEN
 | |
|                IF( CURSL )
 | |
|      $            SDIM = SDIM + 1
 | |
|                IP = 0
 | |
|                IF( CURSL .AND. .NOT.LASTSL )
 | |
|      $            INFO = N + 2
 | |
|             ELSE
 | |
|                IF( IP.EQ.1 ) THEN
 | |
| *
 | |
| *                 Last eigenvalue of conjugate pair
 | |
| *
 | |
|                   CURSL = CURSL .OR. LASTSL
 | |
|                   LASTSL = CURSL
 | |
|                   IF( CURSL )
 | |
|      $               SDIM = SDIM + 2
 | |
|                   IP = -1
 | |
|                   IF( CURSL .AND. .NOT.LST2SL )
 | |
|      $               INFO = N + 2
 | |
|                ELSE
 | |
| *
 | |
| *                 First eigenvalue of conjugate pair
 | |
| *
 | |
|                   IP = 1
 | |
|                END IF
 | |
|             END IF
 | |
|             LST2SL = LASTSL
 | |
|             LASTSL = CURSL
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEES
 | |
| *
 | |
|       END
 |