302 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGEEQU
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEEQU + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeequ.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeequ.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeequ.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       DOUBLE PRECISION   AMAX, COLCND, ROWCND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), C( * ), R( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGEEQU computes row and column scalings intended to equilibrate an
 | |
| *> M-by-N matrix A and reduce its condition number.  R returns the row
 | |
| *> scale factors and C the column scale factors, chosen to try to make
 | |
| *> the largest element in each row and column of the matrix B with
 | |
| *> elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
 | |
| *>
 | |
| *> R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 | |
| *> number and BIGNUM = largest safe number.  Use of these scaling
 | |
| *> factors is not guaranteed to reduce the condition number of A but
 | |
| *> works well in practice.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix whose equilibration factors are
 | |
| *>          to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] R
 | |
| *> \verbatim
 | |
| *>          R is DOUBLE PRECISION array, dimension (M)
 | |
| *>          If INFO = 0 or INFO > M, R contains the row scale factors
 | |
| *>          for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If INFO = 0,  C contains the column scale factors for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ROWCND
 | |
| *> \verbatim
 | |
| *>          ROWCND is DOUBLE PRECISION
 | |
| *>          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
 | |
| *>          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
 | |
| *>          AMAX is neither too large nor too small, it is not worth
 | |
| *>          scaling by R.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COLCND
 | |
| *> \verbatim
 | |
| *>          COLCND is DOUBLE PRECISION
 | |
| *>          If INFO = 0, COLCND contains the ratio of the smallest
 | |
| *>          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
 | |
| *>          worth scaling by C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AMAX
 | |
| *> \verbatim
 | |
| *>          AMAX is DOUBLE PRECISION
 | |
| *>          Absolute value of largest matrix element.  If AMAX is very
 | |
| *>          close to overflow or very close to underflow, the matrix
 | |
| *>          should be scaled.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i,  and i is
 | |
| *>                <= M:  the i-th row of A is exactly zero
 | |
| *>                >  M:  the (i-M)-th column of A is exactly zero
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
|       DOUBLE PRECISION   AMAX, COLCND, ROWCND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), C( * ), R( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   BIGNUM, RCMAX, RCMIN, SMLNUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEEQU', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          ROWCND = ONE
 | |
|          COLCND = ONE
 | |
|          AMAX = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Compute row scale factors.
 | |
| *
 | |
|       DO 10 I = 1, M
 | |
|          R( I ) = ZERO
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Find the maximum element in each row.
 | |
| *
 | |
|       DO 30 J = 1, N
 | |
|          DO 20 I = 1, M
 | |
|             R( I ) = MAX( R( I ), ABS( A( I, J ) ) )
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Find the maximum and minimum scale factors.
 | |
| *
 | |
|       RCMIN = BIGNUM
 | |
|       RCMAX = ZERO
 | |
|       DO 40 I = 1, M
 | |
|          RCMAX = MAX( RCMAX, R( I ) )
 | |
|          RCMIN = MIN( RCMIN, R( I ) )
 | |
|    40 CONTINUE
 | |
|       AMAX = RCMAX
 | |
| *
 | |
|       IF( RCMIN.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Find the first zero scale factor and return an error code.
 | |
| *
 | |
|          DO 50 I = 1, M
 | |
|             IF( R( I ).EQ.ZERO ) THEN
 | |
|                INFO = I
 | |
|                RETURN
 | |
|             END IF
 | |
|    50    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Invert the scale factors.
 | |
| *
 | |
|          DO 60 I = 1, M
 | |
|             R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        Compute ROWCND = min(R(I)) / max(R(I))
 | |
| *
 | |
|          ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
 | |
|       END IF
 | |
| *
 | |
| *     Compute column scale factors
 | |
| *
 | |
|       DO 70 J = 1, N
 | |
|          C( J ) = ZERO
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Find the maximum element in each column,
 | |
| *     assuming the row scaling computed above.
 | |
| *
 | |
|       DO 90 J = 1, N
 | |
|          DO 80 I = 1, M
 | |
|             C( J ) = MAX( C( J ), ABS( A( I, J ) )*R( I ) )
 | |
|    80    CONTINUE
 | |
|    90 CONTINUE
 | |
| *
 | |
| *     Find the maximum and minimum scale factors.
 | |
| *
 | |
|       RCMIN = BIGNUM
 | |
|       RCMAX = ZERO
 | |
|       DO 100 J = 1, N
 | |
|          RCMIN = MIN( RCMIN, C( J ) )
 | |
|          RCMAX = MAX( RCMAX, C( J ) )
 | |
|   100 CONTINUE
 | |
| *
 | |
|       IF( RCMIN.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Find the first zero scale factor and return an error code.
 | |
| *
 | |
|          DO 110 J = 1, N
 | |
|             IF( C( J ).EQ.ZERO ) THEN
 | |
|                INFO = M + J
 | |
|                RETURN
 | |
|             END IF
 | |
|   110    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Invert the scale factors.
 | |
| *
 | |
|          DO 120 J = 1, N
 | |
|             C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
 | |
|   120    CONTINUE
 | |
| *
 | |
| *        Compute COLCND = min(C(J)) / max(C(J))
 | |
| *
 | |
|          COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEEQU
 | |
| *
 | |
|       END
 |