1301 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1301 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* Subroutine */ int dgedmdq_(char *jobs, char *jobz, char *jobr, char *jobq, 
 | |
| 	char *jobt, char *jobf, integer *whtsvd, integer *m, integer *n, 
 | |
| 	doublereal *f, integer *ldf, doublereal *x, integer *ldx, doublereal *
 | |
| 	y, integer *ldy, integer *nrnk, doublereal *tol, integer *k, 
 | |
| 	doublereal *reig, doublereal *imeig, doublereal *z__, integer *ldz, 
 | |
| 	doublereal *res, doublereal *b, integer *ldb, doublereal *v, integer *
 | |
| 	ldv, doublereal *s, integer *lds, doublereal *work, integer *lwork, 
 | |
| 	integer *iwork, integer *liwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer f_dim1, f_offset, x_dim1, x_offset, y_dim1, y_offset, z_dim1, 
 | |
| 	    z_offset, b_dim1, b_offset, v_dim1, v_offset, s_dim1, s_offset, 
 | |
| 	    i__1, i__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal zero;
 | |
|     integer info1;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     char jobvl[1];
 | |
|     integer minmn;
 | |
|     logical wantq;
 | |
|     integer mlwqr, olwqr;
 | |
|     logical wntex;
 | |
|     extern /* Subroutine */ int dgedmd_(char *, char *, char *, char *, 
 | |
| 	    integer *, integer *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
 | |
| 	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *, integer *, integer *, integer 
 | |
| 	    *), dgeqrf_(integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    integer *), dlacpy_(char *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *), dlaset_(char *, 
 | |
| 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    integer *), xerbla_(char *, integer *);
 | |
|     integer mlwdmd, olwdmd;
 | |
|     logical sccolx, sccoly;
 | |
|     extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    integer *), dormqr_(char *, char *, integer *, integer *, integer 
 | |
| 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *,
 | |
| 	     doublereal *, integer *, integer *);
 | |
|     integer iminwr;
 | |
|     logical wntvec, wntvcf;
 | |
|     integer mlwgqr;
 | |
|     logical wntref;
 | |
|     integer mlwork, olwgqr, olwork;
 | |
|     doublereal rdummy[2];
 | |
|     integer mlwmqr, olwmqr;
 | |
|     logical lquery, wntres, wnttrf, wntvcq;
 | |
|     doublereal one;
 | |
| 
 | |
| /* March 2023 */
 | |
| /* ..... */
 | |
| /*      USE                   iso_fortran_env */
 | |
| /*      INTEGER, PARAMETER :: WP = real64 */
 | |
| /* ..... */
 | |
| /*     Scalar arguments */
 | |
| /*     Array arguments */
 | |
| /* ..... */
 | |
| /*     Purpose */
 | |
| /*     ======= */
 | |
| /*     DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for */
 | |
| /*     a pair of data snapshot matrices, using a QR factorization */
 | |
| /*     based compression of the data. For the input matrices */
 | |
| /*     X and Y such that Y = A*X with an unaccessible matrix */
 | |
| /*     A, DGEDMDQ computes a certain number of Ritz pairs of A using */
 | |
| /*     the standard Rayleigh-Ritz extraction from a subspace of */
 | |
| /*     range(X) that is determined using the leading left singular */
 | |
| /*     vectors of X. Optionally, DGEDMDQ returns the residuals */
 | |
| /*     of the computed Ritz pairs, the information needed for */
 | |
| /*     a refinement of the Ritz vectors, or the eigenvectors of */
 | |
| /*     the Exact DMD. */
 | |
| /*     For further details see the references listed */
 | |
| /*     below. For more details of the implementation see [3]. */
 | |
| 
 | |
| /*     References */
 | |
| /*     ========== */
 | |
| /*     [1] P. Schmid: Dynamic mode decomposition of numerical */
 | |
| /*         and experimental data, */
 | |
| /*         Journal of Fluid Mechanics 656, 5-28, 2010. */
 | |
| /*     [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal */
 | |
| /*         decompositions: analysis and enhancements, */
 | |
| /*         SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. */
 | |
| /*     [3] Z. Drmac: A LAPACK implementation of the Dynamic */
 | |
| /*         Mode Decomposition I. Technical report. AIMDyn Inc. */
 | |
| /*         and LAPACK Working Note 298. */
 | |
| /*     [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. */
 | |
| /*         Brunton, N. Kutz: On Dynamic Mode Decomposition: */
 | |
| /*         Theory and Applications, Journal of Computational */
 | |
| /*         Dynamics 1(2), 391 -421, 2014. */
 | |
| 
 | |
| /*     Developed and supported by: */
 | |
| /*     =========================== */
 | |
| /*     Developed and coded by Zlatko Drmac, Faculty of Science, */
 | |
| /*     University of Zagreb;  drmac@math.hr */
 | |
| /*     In cooperation with */
 | |
| /*     AIMdyn Inc., Santa Barbara, CA. */
 | |
| /*     and supported by */
 | |
| /*     - DARPA SBIR project "Koopman Operator-Based Forecasting */
 | |
| /*     for Nonstationary Processes from Near-Term, Limited */
 | |
| /*     Observational Data" Contract No: W31P4Q-21-C-0007 */
 | |
| /*     - DARPA PAI project "Physics-Informed Machine Learning */
 | |
| /*     Methodologies" Contract No: HR0011-18-9-0033 */
 | |
| /*     - DARPA MoDyL project "A Data-Driven, Operator-Theoretic */
 | |
| /*     Framework for Space-Time Analysis of Process Dynamics" */
 | |
| /*     Contract No: HR0011-16-C-0116 */
 | |
| /*     Any opinions, findings and conclusions or recommendations */
 | |
| /*     expressed in this material are those of the author and */
 | |
| /*     do not necessarily reflect the views of the DARPA SBIR */
 | |
| /*     Program Office. */
 | |
| /* ============================================================ */
 | |
| /*     Distribution Statement A: */
 | |
| /*     Approved for Public Release, Distribution Unlimited. */
 | |
| /*     Cleared by DARPA on September 29, 2022 */
 | |
| /* ============================================================ */
 | |
| /* ...................................................................... */
 | |
| /*     Arguments */
 | |
| /*     ========= */
 | |
| /*     JOBS (input) CHARACTER*1 */
 | |
| /*     Determines whether the initial data snapshots are scaled */
 | |
| /*     by a diagonal matrix. The data snapshots are the columns */
 | |
| /*     of F. The leading N-1 columns of F are denoted X and the */
 | |
| /*     trailing N-1 columns are denoted Y. */
 | |
| /*     'S' :: The data snapshots matrices X and Y are multiplied */
 | |
| /*            with a diagonal matrix D so that X*D has unit */
 | |
| /*            nonzero columns (in the Euclidean 2-norm) */
 | |
| /*     'C' :: The snapshots are scaled as with the 'S' option. */
 | |
| /*            If it is found that an i-th column of X is zero */
 | |
| /*            vector and the corresponding i-th column of Y is */
 | |
| /*            non-zero, then the i-th column of Y is set to */
 | |
| /*            zero and a warning flag is raised. */
 | |
| /*     'Y' :: The data snapshots matrices X and Y are multiplied */
 | |
| /*            by a diagonal matrix D so that Y*D has unit */
 | |
| /*            nonzero columns (in the Euclidean 2-norm) */
 | |
| /*     'N' :: No data scaling. */
 | |
| /* ..... */
 | |
| /*     JOBZ (input) CHARACTER*1 */
 | |
| /*     Determines whether the eigenvectors (Koopman modes) will */
 | |
| /*     be computed. */
 | |
| /*     'V' :: The eigenvectors (Koopman modes) will be computed */
 | |
| /*            and returned in the matrix Z. */
 | |
| /*            See the description of Z. */
 | |
| /*     'F' :: The eigenvectors (Koopman modes) will be returned */
 | |
| /*            in factored form as the product Z*V, where Z */
 | |
| /*            is orthonormal and V contains the eigenvectors */
 | |
| /*            of the corresponding Rayleigh quotient. */
 | |
| /*            See the descriptions of F, V, Z. */
 | |
| /*     'Q' :: The eigenvectors (Koopman modes) will be returned */
 | |
| /*            in factored form as the product Q*Z, where Z */
 | |
| /*            contains the eigenvectors of the compression of the */
 | |
| /*            underlying discretized operator onto the span of */
 | |
| /*            the data snapshots. See the descriptions of F, V, Z. */
 | |
| /*            Q is from the initial QR factorization. */
 | |
| /*     'N' :: The eigenvectors are not computed. */
 | |
| /* ..... */
 | |
| /*     JOBR (input) CHARACTER*1 */
 | |
| /*     Determines whether to compute the residuals. */
 | |
| /*     'R' :: The residuals for the computed eigenpairs will */
 | |
| /*            be computed and stored in the array RES. */
 | |
| /*            See the description of RES. */
 | |
| /*            For this option to be legal, JOBZ must be 'V'. */
 | |
| /*     'N' :: The residuals are not computed. */
 | |
| /* ..... */
 | |
| /*     JOBQ (input) CHARACTER*1 */
 | |
| /*     Specifies whether to explicitly compute and return the */
 | |
| /*     orthogonal matrix from the QR factorization. */
 | |
| /*     'Q' :: The matrix Q of the QR factorization of the data */
 | |
| /*            snapshot matrix is computed and stored in the */
 | |
| /*            array F. See the description of F. */
 | |
| /*     'N' :: The matrix Q is not explicitly computed. */
 | |
| /* ..... */
 | |
| /*     JOBT (input) CHARACTER*1 */
 | |
| /*     Specifies whether to return the upper triangular factor */
 | |
| /*     from the QR factorization. */
 | |
| /*     'R' :: The matrix R of the QR factorization of the data */
 | |
| /*            snapshot matrix F is returned in the array Y. */
 | |
| /*            See the description of Y and Further details. */
 | |
| /*     'N' :: The matrix R is not returned. */
 | |
| /* ..... */
 | |
| /*     JOBF (input) CHARACTER*1 */
 | |
| /*     Specifies whether to store information needed for post- */
 | |
| /*     processing (e.g. computing refined Ritz vectors) */
 | |
| /*     'R' :: The matrix needed for the refinement of the Ritz */
 | |
| /*            vectors is computed and stored in the array B. */
 | |
| /*            See the description of B. */
 | |
| /*     'E' :: The unscaled eigenvectors of the Exact DMD are */
 | |
| /*            computed and returned in the array B. See the */
 | |
| /*            description of B. */
 | |
| /*     'N' :: No eigenvector refinement data is computed. */
 | |
| /*     To be useful on exit, this option needs JOBQ='Q'. */
 | |
| /* ..... */
 | |
| /*     WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } */
 | |
| /*     Allows for a selection of the SVD algorithm from the */
 | |
| /*     LAPACK library. */
 | |
| /*     1 :: DGESVD (the QR SVD algorithm) */
 | |
| /*     2 :: DGESDD (the Divide and Conquer algorithm; if enough */
 | |
| /*          workspace available, this is the fastest option) */
 | |
| /*     3 :: DGESVDQ (the preconditioned QR SVD  ; this and 4 */
 | |
| /*          are the most accurate options) */
 | |
| /*     4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3 */
 | |
| /*          are the most accurate options) */
 | |
| /*     For the four methods above, a significant difference in */
 | |
| /*     the accuracy of small singular values is possible if */
 | |
| /*     the snapshots vary in norm so that X is severely */
 | |
| /*     ill-conditioned. If small (smaller than EPS*||X||) */
 | |
| /*     singular values are of interest and JOBS=='N',  then */
 | |
| /*     the options (3, 4) give the most accurate results, where */
 | |
| /*     the option 4 is slightly better and with stronger */
 | |
| /*     theoretical background. */
 | |
| /*     If JOBS=='S', i.e. the columns of X will be normalized, */
 | |
| /*     then all methods give nearly equally accurate results. */
 | |
| /* ..... */
 | |
| /*     M (input) INTEGER, M >= 0 */
 | |
| /*     The state space dimension (the number of rows of F). */
 | |
| /* ..... */
 | |
| /*     N (input) INTEGER, 0 <= N <= M */
 | |
| /*     The number of data snapshots from a single trajectory, */
 | |
| /*     taken at equidistant discrete times. This is the */
 | |
| /*     number of columns of F. */
 | |
| /* ..... */
 | |
| /*     F (input/output) REAL(KIND=WP) M-by-N array */
 | |
| /*     > On entry, */
 | |
| /*     the columns of F are the sequence of data snapshots */
 | |
| /*     from a single trajectory, taken at equidistant discrete */
 | |
| /*     times. It is assumed that the column norms of F are */
 | |
| /*     in the range of the normalized floating point numbers. */
 | |
| /*     < On exit, */
 | |
| /*     If JOBQ == 'Q', the array F contains the orthogonal */
 | |
| /*     matrix/factor of the QR factorization of the initial */
 | |
| /*     data snapshots matrix F. See the description of JOBQ. */
 | |
| /*     If JOBQ == 'N', the entries in F strictly below the main */
 | |
| /*     diagonal contain, column-wise, the information on the */
 | |
| /*     Householder vectors, as returned by DGEQRF. The */
 | |
| /*     remaining information to restore the orthogonal matrix */
 | |
| /*     of the initial QR factorization is stored in WORK(1:N). */
 | |
| /*     See the description of WORK. */
 | |
| /* ..... */
 | |
| /*     LDF (input) INTEGER, LDF >= M */
 | |
| /*     The leading dimension of the array F. */
 | |
| /* ..... */
 | |
| /*     X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array */
 | |
| /*     X is used as workspace to hold representations of the */
 | |
| /*     leading N-1 snapshots in the orthonormal basis computed */
 | |
| /*     in the QR factorization of F. */
 | |
| /*     On exit, the leading K columns of X contain the leading */
 | |
| /*     K left singular vectors of the above described content */
 | |
| /*     of X. To lift them to the space of the left singular */
 | |
| /*     vectors U(:,1:K)of the input data, pre-multiply with the */
 | |
| /*     Q factor from the initial QR factorization. */
 | |
| /*     See the descriptions of F, K, V  and Z. */
 | |
| /* ..... */
 | |
| /*     LDX (input) INTEGER, LDX >= N */
 | |
| /*     The leading dimension of the array X. */
 | |
| /* ..... */
 | |
| /*     Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array */
 | |
| /*     Y is used as workspace to hold representations of the */
 | |
| /*     trailing N-1 snapshots in the orthonormal basis computed */
 | |
| /*     in the QR factorization of F. */
 | |
| /*     On exit, */
 | |
| /*     If JOBT == 'R', Y contains the MIN(M,N)-by-N upper */
 | |
| /*     triangular factor from the QR factorization of the data */
 | |
| /*     snapshot matrix F. */
 | |
| /* ..... */
 | |
| /*     LDY (input) INTEGER , LDY >= N */
 | |
| /*     The leading dimension of the array Y. */
 | |
| /* ..... */
 | |
| /*     NRNK (input) INTEGER */
 | |
| /*     Determines the mode how to compute the numerical rank, */
 | |
| /*     i.e. how to truncate small singular values of the input */
 | |
| /*     matrix X. On input, if */
 | |
| /*     NRNK = -1 :: i-th singular value sigma(i) is truncated */
 | |
| /*                  if sigma(i) <= TOL*sigma(1) */
 | |
| /*                  This option is recommended. */
 | |
| /*     NRNK = -2 :: i-th singular value sigma(i) is truncated */
 | |
| /*                  if sigma(i) <= TOL*sigma(i-1) */
 | |
| /*                  This option is included for R&D purposes. */
 | |
| /*                  It requires highly accurate SVD, which */
 | |
| /*                  may not be feasible. */
 | |
| /*     The numerical rank can be enforced by using positive */
 | |
| /*     value of NRNK as follows: */
 | |
| /*     0 < NRNK <= N-1 :: at most NRNK largest singular values */
 | |
| /*     will be used. If the number of the computed nonzero */
 | |
| /*     singular values is less than NRNK, then only those */
 | |
| /*     nonzero values will be used and the actually used */
 | |
| /*     dimension is less than NRNK. The actual number of */
 | |
| /*     the nonzero singular values is returned in the variable */
 | |
| /*     K. See the description of K. */
 | |
| /* ..... */
 | |
| /*     TOL (input) REAL(KIND=WP), 0 <= TOL < 1 */
 | |
| /*     The tolerance for truncating small singular values. */
 | |
| /*     See the description of NRNK. */
 | |
| /* ..... */
 | |
| /*     K (output) INTEGER,  0 <= K <= N */
 | |
| /*     The dimension of the SVD/POD basis for the leading N-1 */
 | |
| /*     data snapshots (columns of F) and the number of the */
 | |
| /*     computed Ritz pairs. The value of K is determined */
 | |
| /*     according to the rule set by the parameters NRNK and */
 | |
| /*     TOL. See the descriptions of NRNK and TOL. */
 | |
| /* ..... */
 | |
| /*     REIG (output) REAL(KIND=WP) (N-1)-by-1 array */
 | |
| /*     The leading K (K<=N) entries of REIG contain */
 | |
| /*     the real parts of the computed eigenvalues */
 | |
| /*     REIG(1:K) + sqrt(-1)*IMEIG(1:K). */
 | |
| /*     See the descriptions of K, IMEIG, Z. */
 | |
| /* ..... */
 | |
| /*     IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array */
 | |
| /*     The leading K (K<N) entries of REIG contain */
 | |
| /*     the imaginary parts of the computed eigenvalues */
 | |
| /*     REIG(1:K) + sqrt(-1)*IMEIG(1:K). */
 | |
| /*     The eigenvalues are determined as follows: */
 | |
| /*     If IMEIG(i) == 0, then the corresponding eigenvalue is */
 | |
| /*     real, LAMBDA(i) = REIG(i). */
 | |
| /*     If IMEIG(i)>0, then the corresponding complex */
 | |
| /*     conjugate pair of eigenvalues reads */
 | |
| /*     LAMBDA(i)   = REIG(i) + sqrt(-1)*IMAG(i) */
 | |
| /*     LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) */
 | |
| /*     That is, complex conjugate pairs have consequtive */
 | |
| /*     indices (i,i+1), with the positive imaginary part */
 | |
| /*     listed first. */
 | |
| /*     See the descriptions of K, REIG, Z. */
 | |
| /* ..... */
 | |
| /*     Z (workspace/output) REAL(KIND=WP)  M-by-(N-1) array */
 | |
| /*     If JOBZ =='V' then */
 | |
| /*        Z contains real Ritz vectors as follows: */
 | |
| /*        If IMEIG(i)=0, then Z(:,i) is an eigenvector of */
 | |
| /*        the i-th Ritz value. */
 | |
| /*        If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then */
 | |
| /*        [Z(:,i) Z(:,i+1)] span an invariant subspace and */
 | |
| /*        the Ritz values extracted from this subspace are */
 | |
| /*        REIG(i) + sqrt(-1)*IMEIG(i) and */
 | |
| /*        REIG(i) - sqrt(-1)*IMEIG(i). */
 | |
| /*        The corresponding eigenvectors are */
 | |
| /*        Z(:,i) + sqrt(-1)*Z(:,i+1) and */
 | |
| /*        Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. */
 | |
| /*     If JOBZ == 'F', then the above descriptions hold for */
 | |
| /*     the columns of Z*V, where the columns of V are the */
 | |
| /*     eigenvectors of the K-by-K Rayleigh quotient, and Z is */
 | |
| /*     orthonormal. The columns of V are similarly structured: */
 | |
| /*     If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if */
 | |
| /*     IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and */
 | |
| /*                       Z*V(:,i)-sqrt(-1)*Z*V(:,i+1) */
 | |
| /*     are the eigenvectors of LAMBDA(i), LAMBDA(i+1). */
 | |
| /*     See the descriptions of REIG, IMEIG, X and V. */
 | |
| /* ..... */
 | |
| /*     LDZ (input) INTEGER , LDZ >= M */
 | |
| /*     The leading dimension of the array Z. */
 | |
| /* ..... */
 | |
| /*     RES (output) REAL(KIND=WP) (N-1)-by-1 array */
 | |
| /*     RES(1:K) contains the residuals for the K computed */
 | |
| /*     Ritz pairs. */
 | |
| /*     If LAMBDA(i) is real, then */
 | |
| /*        RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. */
 | |
| /*     If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair */
 | |
| /*     then */
 | |
| /*     RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F */
 | |
| /*     where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] */
 | |
| /*               [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. */
 | |
| /*     It holds that */
 | |
| /*     RES(i)   = || A*ZC(:,i)   - LAMBDA(i)  *ZC(:,i)   ||_2 */
 | |
| /*     RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 */
 | |
| /*     where ZC(:,i)   =  Z(:,i) + sqrt(-1)*Z(:,i+1) */
 | |
| /*           ZC(:,i+1) =  Z(:,i) - sqrt(-1)*Z(:,i+1) */
 | |
| /*     See the description of Z. */
 | |
| /* ..... */
 | |
| /*     B (output) REAL(KIND=WP)  MIN(M,N)-by-(N-1) array. */
 | |
| /*     IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can */
 | |
| /*     be used for computing the refined vectors; see further */
 | |
| /*     details in the provided references. */
 | |
| /*     If JOBF == 'E', B(1:N,1;K) contains */
 | |
| /*     A*U(:,1:K)*W(1:K,1:K), which are the vectors from the */
 | |
| /*     Exact DMD, up to scaling by the inverse eigenvalues. */
 | |
| /*     In both cases, the content of B can be lifted to the */
 | |
| /*     original dimension of the input data by pre-multiplying */
 | |
| /*     with the Q factor from the initial QR factorization. */
 | |
| /*     Here A denotes a compression of the underlying operator. */
 | |
| /*     See the descriptions of F and X. */
 | |
| /*     If JOBF =='N', then B is not referenced. */
 | |
| /* ..... */
 | |
| /*     LDB (input) INTEGER, LDB >= MIN(M,N) */
 | |
| /*     The leading dimension of the array B. */
 | |
| /* ..... */
 | |
| /*     V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array */
 | |
| /*     On exit, V(1:K,1:K) contains the K eigenvectors of */
 | |
| /*     the Rayleigh quotient. The eigenvectors of a complex */
 | |
| /*     conjugate pair of eigenvalues are returned in real form */
 | |
| /*     as explained in the description of Z. The Ritz vectors */
 | |
| /*     (returned in Z) are the product of X and V; see */
 | |
| /*     the descriptions of X and Z. */
 | |
| /* ..... */
 | |
| /*     LDV (input) INTEGER, LDV >= N-1 */
 | |
| /*     The leading dimension of the array V. */
 | |
| /* ..... */
 | |
| /*     S (output) REAL(KIND=WP) (N-1)-by-(N-1) array */
 | |
| /*     The array S(1:K,1:K) is used for the matrix Rayleigh */
 | |
| /*     quotient. This content is overwritten during */
 | |
| /*     the eigenvalue decomposition by DGEEV. */
 | |
| /*     See the description of K. */
 | |
| /* ..... */
 | |
| /*     LDS (input) INTEGER, LDS >= N-1 */
 | |
| /*     The leading dimension of the array S. */
 | |
| /* ..... */
 | |
| /*     WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array */
 | |
| /*     On exit, */
 | |
| /*     WORK(1:MIN(M,N)) contains the scalar factors of the */
 | |
| /*     elementary reflectors as returned by DGEQRF of the */
 | |
| /*     M-by-N input matrix F. */
 | |
| /*     WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of */
 | |
| /*     the input submatrix F(1:M,1:N-1). */
 | |
| /*     If the call to DGEDMDQ is only workspace query, then */
 | |
| /*     WORK(1) contains the minimal workspace length and */
 | |
| /*     WORK(2) is the optimal workspace length. Hence, the */
 | |
| /*     length of work is at least 2. */
 | |
| /*     See the description of LWORK. */
 | |
| /* ..... */
 | |
| /*     LWORK (input) INTEGER */
 | |
| /*     The minimal length of the  workspace vector WORK. */
 | |
| /*     LWORK is calculated as follows: */
 | |
| /*     Let MLWQR  = N (minimal workspace for DGEQRF[M,N]) */
 | |
| /*         MLWDMD = minimal workspace for DGEDMD (see the */
 | |
| /*                  description of LWORK in DGEDMD) for */
 | |
| /*                  snapshots of dimensions MIN(M,N)-by-(N-1) */
 | |
| /*         MLWMQR = N (minimal workspace for */
 | |
| /*                    DORMQR['L','N',M,N,N]) */
 | |
| /*         MLWGQR = N (minimal workspace for DORGQR[M,N,N]) */
 | |
| /*     Then */
 | |
| /*     LWORK = MAX(N+MLWQR, N+MLWDMD) */
 | |
| /*     is updated as follows: */
 | |
| /*        if   JOBZ == 'V' or JOBZ == 'F' THEN */
 | |
| /*             LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWMQR ) */
 | |
| /*        if   JOBQ == 'Q' THEN */
 | |
| /*             LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWGQR) */
 | |
| /*     If on entry LWORK = -1, then a workspace query is */
 | |
| /*     assumed and the procedure only computes the minimal */
 | |
| /*     and the optimal workspace lengths for both WORK and */
 | |
| /*     IWORK. See the descriptions of WORK and IWORK. */
 | |
| /* ..... */
 | |
| /*     IWORK (workspace/output) INTEGER LIWORK-by-1 array */
 | |
| /*     Workspace that is required only if WHTSVD equals */
 | |
| /*     2 , 3 or 4. (See the description of WHTSVD). */
 | |
| /*     If on entry LWORK =-1 or LIWORK=-1, then the */
 | |
| /*     minimal length of IWORK is computed and returned in */
 | |
| /*     IWORK(1). See the description of LIWORK. */
 | |
| /* ..... */
 | |
| /*     LIWORK (input) INTEGER */
 | |
| /*     The minimal length of the workspace vector IWORK. */
 | |
| /*     If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 */
 | |
| /*     Let M1=MIN(M,N), N1=N-1. Then */
 | |
| /*     If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) */
 | |
| /*     If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) */
 | |
| /*     If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) */
 | |
| /*     If on entry LIWORK = -1, then a workspace query is */
 | |
| /*     assumed and the procedure only computes the minimal */
 | |
| /*     and the optimal workspace lengths for both WORK and */
 | |
| /*     IWORK. See the descriptions of WORK and IWORK. */
 | |
| /* ..... */
 | |
| /*     INFO (output) INTEGER */
 | |
| /*     -i < 0 :: On entry, the i-th argument had an */
 | |
| /*               illegal value */
 | |
| /*        = 0 :: Successful return. */
 | |
| /*        = 1 :: Void input. Quick exit (M=0 or N=0). */
 | |
| /*        = 2 :: The SVD computation of X did not converge. */
 | |
| /*               Suggestion: Check the input data and/or */
 | |
| /*               repeat with different WHTSVD. */
 | |
| /*        = 3 :: The computation of the eigenvalues did not */
 | |
| /*               converge. */
 | |
| /*        = 4 :: If data scaling was requested on input and */
 | |
| /*               the procedure found inconsistency in the data */
 | |
| /*               such that for some column index i, */
 | |
| /*               X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set */
 | |
| /*               to zero if JOBS=='C'. The computation proceeds */
 | |
| /*               with original or modified data and warning */
 | |
| /*               flag is set with INFO=4. */
 | |
| /* ............................................................. */
 | |
| /* ............................................................. */
 | |
| /*     Parameters */
 | |
| /*     ~~~~~~~~~~ */
 | |
| 
 | |
| /*     Local scalars */
 | |
| /*     ~~~~~~~~~~~~~ */
 | |
| 
 | |
| /*     Local array */
 | |
| /*     ~~~~~~~~~~~ */
 | |
| 
 | |
| /*     External functions (BLAS and LAPACK) */
 | |
| /*     ~~~~~~~~~~~~~~~~~ */
 | |
| 
 | |
| /*     External subroutines (BLAS and LAPACK) */
 | |
| /*     ~~~~~~~~~~~~~~~~~~~~ */
 | |
| /*     External subroutines */
 | |
| /*     ~~~~~~~~~~~~~~~~~~~~ */
 | |
| /*     Intrinsic functions */
 | |
| /*     ~~~~~~~~~~~~~~~~~~~ */
 | |
| /* .......................................................... */
 | |
|     /* Parameter adjustments */
 | |
|     f_dim1 = *ldf;
 | |
|     f_offset = 1 + f_dim1 * 1;
 | |
|     f -= f_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     y_dim1 = *ldy;
 | |
|     y_offset = 1 + y_dim1 * 1;
 | |
|     y -= y_offset;
 | |
|     --reig;
 | |
|     --imeig;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --res;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     s_dim1 = *lds;
 | |
|     s_offset = 1 + s_dim1 * 1;
 | |
|     s -= s_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     zero = 0.f;
 | |
|     one = 1.f;
 | |
| 
 | |
| /*    Test the input arguments */
 | |
|     wntres = lsame_(jobr, "R");
 | |
|     sccolx = lsame_(jobs, "S") || lsame_(jobs, "C");
 | |
|     sccoly = lsame_(jobs, "Y");
 | |
|     wntvec = lsame_(jobz, "V");
 | |
|     wntvcf = lsame_(jobz, "F");
 | |
|     wntvcq = lsame_(jobz, "Q");
 | |
|     wntref = lsame_(jobf, "R");
 | |
|     wntex = lsame_(jobf, "E");
 | |
|     wantq = lsame_(jobq, "Q");
 | |
|     wnttrf = lsame_(jobt, "R");
 | |
|     minmn = f2cmin(*m,*n);
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1 || *liwork == -1;
 | |
| 
 | |
|     if (! (sccolx || sccoly || lsame_(jobs, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (wntvec || wntvcf || wntvcq || lsame_(jobz, "N"))) {
 | |
| 	*info = -2;
 | |
|     } else if (! (wntres || lsame_(jobr, "N")) || 
 | |
| 	    wntres && lsame_(jobz, "N")) {
 | |
| 	*info = -3;
 | |
|     } else if (! (wantq || lsame_(jobq, "N"))) {
 | |
| 	*info = -4;
 | |
|     } else if (! (wnttrf || lsame_(jobt, "N"))) {
 | |
| 	*info = -5;
 | |
|     } else if (! (wntref || wntex || lsame_(jobf, "N")))
 | |
| 	     {
 | |
| 	*info = -6;
 | |
|     } else if (! (*whtsvd == 1 || *whtsvd == 2 || *whtsvd == 3 || *whtsvd == 
 | |
| 	    4)) {
 | |
| 	*info = -7;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -8;
 | |
|     } else if (*n < 0 || *n > *m + 1) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldf < *m) {
 | |
| 	*info = -11;
 | |
|     } else if (*ldx < minmn) {
 | |
| 	*info = -13;
 | |
|     } else if (*ldy < minmn) {
 | |
| 	*info = -15;
 | |
|     } else if (! (*nrnk == -2 || *nrnk == -1 || *nrnk >= 1 && *nrnk <= *n)) {
 | |
| 	*info = -16;
 | |
|     } else if (*tol < zero || *tol >= one) {
 | |
| 	*info = -17;
 | |
|     } else if (*ldz < *m) {
 | |
| 	*info = -22;
 | |
|     } else if ((wntref || wntex) && *ldb < minmn) {
 | |
| 	*info = -25;
 | |
|     } else if (*ldv < *n - 1) {
 | |
| 	*info = -27;
 | |
|     } else if (*lds < *n - 1) {
 | |
| 	*info = -29;
 | |
|     }
 | |
| 
 | |
|     if (wntvec || wntvcf || wntvcq) {
 | |
| 	*(unsigned char *)jobvl = 'V';
 | |
|     } else {
 | |
| 	*(unsigned char *)jobvl = 'N';
 | |
|     }
 | |
|     if (*info == 0) {
 | |
| /* Compute the minimal and the optimal workspace */
 | |
| /* requirements. Simulate running the code and */
 | |
| /* determine minimal and optimal sizes of the */
 | |
| /* workspace at any moment of the run. */
 | |
| 	if (*n == 0 || *n == 1) {
 | |
| /* All output except K is void. INFO=1 signals */
 | |
| /* the void input. In case of a workspace query, */
 | |
| /* the minimal workspace lengths are returned. */
 | |
| 	    if (lquery) {
 | |
| 		iwork[1] = 1;
 | |
| 		work[1] = 2.;
 | |
| 		work[2] = 2.;
 | |
| 	    } else {
 | |
| 		*k = 0;
 | |
| 	    }
 | |
| 	    *info = 1;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	mlwqr = f2cmax(1,*n);
 | |
| /* Minimal workspace length for DGEQRF. */
 | |
| 	mlwork = minmn + mlwqr;
 | |
| 	if (lquery) {
 | |
| 	    dgeqrf_(m, n, &f[f_offset], ldf, &work[1], rdummy, &c_n1, &info1);
 | |
| 	    olwqr = (integer) rdummy[0];
 | |
| 	    olwork = f2cmin(*m,*n) + olwqr;
 | |
| 	}
 | |
| 	i__1 = *n - 1;
 | |
| 	dgedmd_(jobs, jobvl, jobr, jobf, whtsvd, &minmn, &i__1, &x[x_offset], 
 | |
| 		ldx, &y[y_offset], ldy, nrnk, tol, k, &reig[1], &imeig[1], &
 | |
| 		z__[z_offset], ldz, &res[1], &b[b_offset], ldb, &v[v_offset], 
 | |
| 		ldv, &s[s_offset], lds, &work[1], &c_n1, &iwork[1], liwork, &
 | |
| 		info1);
 | |
| 	mlwdmd = (integer) work[1];
 | |
| /* Computing MAX */
 | |
| 	i__1 = mlwork, i__2 = minmn + mlwdmd;
 | |
| 	mlwork = f2cmax(i__1,i__2);
 | |
| 	iminwr = iwork[1];
 | |
| 	if (lquery) {
 | |
| 	    olwdmd = (integer) work[2];
 | |
| /* Computing MAX */
 | |
| 	    i__1 = olwork, i__2 = minmn + olwdmd;
 | |
| 	    olwork = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 	if (wntvec || wntvcf) {
 | |
| 	    mlwmqr = f2cmax(1,*n);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mlwork, i__2 = minmn + *n - 1 + mlwmqr;
 | |
| 	    mlwork = f2cmax(i__1,i__2);
 | |
| 	    if (lquery) {
 | |
| 		dormqr_("L", "N", m, n, &minmn, &f[f_offset], ldf, &work[1], &
 | |
| 			z__[z_offset], ldz, &work[1], &c_n1, &info1);
 | |
| 		olwmqr = (integer) work[1];
 | |
| /* Computing MAX */
 | |
| 		i__1 = olwork, i__2 = minmn + *n - 1 + olwmqr;
 | |
| 		olwork = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	}
 | |
| 	if (wantq) {
 | |
| 	    mlwgqr = *n;
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mlwork, i__2 = minmn + *n - 1 + mlwgqr;
 | |
| 	    mlwork = f2cmax(i__1,i__2);
 | |
| 	    if (lquery) {
 | |
| 		dorgqr_(m, &minmn, &minmn, &f[f_offset], ldf, &work[1], &work[
 | |
| 			1], &c_n1, &info1);
 | |
| 		olwgqr = (integer) work[1];
 | |
| /* Computing MAX */
 | |
| 		i__1 = olwork, i__2 = minmn + *n - 1 + olwgqr;
 | |
| 		olwork = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	}
 | |
| 	iminwr = f2cmax(1,iminwr);
 | |
| 	mlwork = f2cmax(2,mlwork);
 | |
| 	if (*lwork < mlwork && ! lquery) {
 | |
| 	    *info = -31;
 | |
| 	}
 | |
| 	if (*liwork < iminwr && ! lquery) {
 | |
| 	    *info = -33;
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DGEDMDQ", &i__1);
 | |
| 	return 0;
 | |
|     } else if (lquery) {
 | |
| /*     Return minimal and optimal workspace sizes */
 | |
| 	iwork[1] = iminwr;
 | |
| 	work[1] = (doublereal) mlwork;
 | |
| 	work[2] = (doublereal) olwork;
 | |
| 	return 0;
 | |
|     }
 | |
| /* ..... */
 | |
| /*     Initial QR factorization that is used to represent the */
 | |
| /*     snapshots as elements of lower dimensional subspace. */
 | |
| /*     For large scale computation with M >>N , at this place */
 | |
| /*     one can use an out of core QRF. */
 | |
| 
 | |
|     i__1 = *lwork - minmn;
 | |
|     dgeqrf_(m, n, &f[f_offset], ldf, &work[1], &work[minmn + 1], &i__1, &
 | |
| 	    info1);
 | |
| 
 | |
| /*     Define X and Y as the snapshots representations in the */
 | |
| /*     orthogonal basis computed in the QR factorization. */
 | |
| /*     X corresponds to the leading N-1 and Y to the trailing */
 | |
| /*     N-1 snapshots. */
 | |
|     i__1 = *n - 1;
 | |
|     dlaset_("L", &minmn, &i__1, &zero, &zero, &x[x_offset], ldx);
 | |
|     i__1 = *n - 1;
 | |
|     dlacpy_("U", &minmn, &i__1, &f[f_offset], ldf, &x[x_offset], ldx);
 | |
|     i__1 = *n - 1;
 | |
|     dlacpy_("A", &minmn, &i__1, &f[(f_dim1 << 1) + 1], ldf, &y[y_offset], ldy);
 | |
|     if (*m >= 3) {
 | |
| 	i__1 = minmn - 2;
 | |
| 	i__2 = *n - 2;
 | |
| 	dlaset_("L", &i__1, &i__2, &zero, &zero, &y[y_dim1 + 3], ldy);
 | |
|     }
 | |
| 
 | |
| /*     Compute the DMD of the projected snapshot pairs (X,Y) */
 | |
|     i__1 = *n - 1;
 | |
|     i__2 = *lwork - minmn;
 | |
|     dgedmd_(jobs, jobvl, jobr, jobf, whtsvd, &minmn, &i__1, &x[x_offset], ldx,
 | |
| 	     &y[y_offset], ldy, nrnk, tol, k, &reig[1], &imeig[1], &z__[
 | |
| 	    z_offset], ldz, &res[1], &b[b_offset], ldb, &v[v_offset], ldv, &s[
 | |
| 	    s_offset], lds, &work[minmn + 1], &i__2, &iwork[1], liwork, &
 | |
| 	    info1);
 | |
|     if (info1 == 2 || info1 == 3) {
 | |
| /* Return with error code. See DGEDMD for details. */
 | |
| 	*info = info1;
 | |
| 	return 0;
 | |
|     } else {
 | |
| 	*info = info1;
 | |
|     }
 | |
| 
 | |
| /*     The Ritz vectors (Koopman modes) can be explicitly */
 | |
| /*     formed or returned in factored form. */
 | |
|     if (wntvec) {
 | |
| /* Compute the eigenvectors explicitly. */
 | |
| 	if (*m > minmn) {
 | |
| 	    i__1 = *m - minmn;
 | |
| 	    dlaset_("A", &i__1, k, &zero, &zero, &z__[minmn + 1 + z_dim1], 
 | |
| 		    ldz);
 | |
| 	}
 | |
| 	i__1 = *lwork - (minmn + *n - 1);
 | |
| 	dormqr_("L", "N", m, k, &minmn, &f[f_offset], ldf, &work[1], &z__[
 | |
| 		z_offset], ldz, &work[minmn + *n], &i__1, &info1);
 | |
|     } else if (wntvcf) {
 | |
| /*   Return the Ritz vectors (eigenvectors) in factored */
 | |
| /*   form Z*V, where Z contains orthonormal matrix (the */
 | |
| /*   product of Q from the initial QR factorization and */
 | |
| /*   the SVD/POD_basis returned by DGEDMD in X) and the */
 | |
| /*   second factor (the eigenvectors of the Rayleigh */
 | |
| /*   quotient) is in the array V, as returned by DGEDMD. */
 | |
| 	dlacpy_("A", n, k, &x[x_offset], ldx, &z__[z_offset], ldz);
 | |
| 	if (*m > *n) {
 | |
| 	    i__1 = *m - *n;
 | |
| 	    dlaset_("A", &i__1, k, &zero, &zero, &z__[*n + 1 + z_dim1], ldz);
 | |
| 	}
 | |
| 	i__1 = *lwork - (minmn + *n - 1);
 | |
| 	dormqr_("L", "N", m, k, &minmn, &f[f_offset], ldf, &work[1], &z__[
 | |
| 		z_offset], ldz, &work[minmn + *n], &i__1, &info1);
 | |
|     }
 | |
| 
 | |
| /*     Some optional output variables: */
 | |
| 
 | |
| /*     The upper triangular factor R in the initial QR */
 | |
| /*     factorization is optionally returned in the array Y. */
 | |
| /*     This is useful if this call to DGEDMDQ is to be */
 | |
| /*     followed by a streaming DMD that is implemented in a */
 | |
| /*     QR compressed form. */
 | |
|     if (wnttrf) {
 | |
| /* Return the upper triangular R in Y */
 | |
| 	dlaset_("A", &minmn, n, &zero, &zero, &y[y_offset], ldy);
 | |
| 	dlacpy_("U", &minmn, n, &f[f_offset], ldf, &y[y_offset], ldy);
 | |
|     }
 | |
| 
 | |
| /*     The orthonormal/orthogonal factor Q in the initial QR */
 | |
| /*     factorization is optionally returned in the array F. */
 | |
| /*     Same as with the triangular factor above, this is */
 | |
| /*     useful in a streaming DMD. */
 | |
|     if (wantq) {
 | |
| /* Q overwrites F */
 | |
| 	i__1 = *lwork - (minmn + *n - 1);
 | |
| 	dorgqr_(m, &minmn, &minmn, &f[f_offset], ldf, &work[1], &work[minmn + 
 | |
| 		*n], &i__1, &info1);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| } /* dgedmdq_ */
 | |
| 
 |