452 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			452 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTRSYL
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTRSYL + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrsyl.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrsyl.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrsyl.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
 | |
| *                          LDC, SCALE, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANA, TRANB
 | |
| *       INTEGER            INFO, ISGN, LDA, LDB, LDC, M, N
 | |
| *       REAL               SCALE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTRSYL solves the complex Sylvester matrix equation:
 | |
| *>
 | |
| *>    op(A)*X + X*op(B) = scale*C or
 | |
| *>    op(A)*X - X*op(B) = scale*C,
 | |
| *>
 | |
| *> where op(A) = A or A**H, and A and B are both upper triangular. A is
 | |
| *> M-by-M and B is N-by-N; the right hand side C and the solution X are
 | |
| *> M-by-N; and scale is an output scale factor, set <= 1 to avoid
 | |
| *> overflow in X.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANA
 | |
| *> \verbatim
 | |
| *>          TRANA is CHARACTER*1
 | |
| *>          Specifies the option op(A):
 | |
| *>          = 'N': op(A) = A    (No transpose)
 | |
| *>          = 'C': op(A) = A**H (Conjugate transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANB
 | |
| *> \verbatim
 | |
| *>          TRANB is CHARACTER*1
 | |
| *>          Specifies the option op(B):
 | |
| *>          = 'N': op(B) = B    (No transpose)
 | |
| *>          = 'C': op(B) = B**H (Conjugate transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ISGN
 | |
| *> \verbatim
 | |
| *>          ISGN is INTEGER
 | |
| *>          Specifies the sign in the equation:
 | |
| *>          = +1: solve op(A)*X + X*op(B) = scale*C
 | |
| *>          = -1: solve op(A)*X - X*op(B) = scale*C
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The order of the matrix A, and the number of rows in the
 | |
| *>          matrices X and C. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix B, and the number of columns in the
 | |
| *>          matrices X and C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,M)
 | |
| *>          The upper triangular matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          The upper triangular matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N right hand side matrix C.
 | |
| *>          On exit, C is overwritten by the solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is REAL
 | |
| *>          The scale factor, scale, set <= 1 to avoid overflow in X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          = 1: A and B have common or very close eigenvalues; perturbed
 | |
| *>               values were used to solve the equation (but the matrices
 | |
| *>               A and B are unchanged).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
 | |
|      $                   LDC, SCALE, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANA, TRANB
 | |
|       INTEGER            INFO, ISGN, LDA, LDB, LDC, M, N
 | |
|       REAL               SCALE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRNA, NOTRNB
 | |
|       INTEGER            J, K, L
 | |
|       REAL               BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
 | |
|      $                   SMLNUM
 | |
|       COMPLEX            A11, SUML, SUMR, VEC, X11
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       COMPLEX            CDOTC, CDOTU, CLADIV
 | |
|       EXTERNAL           LSAME, CLANGE, SLAMCH, CDOTC, CDOTU, CLADIV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CSSCAL, SLABAD, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and Test input parameters
 | |
| *
 | |
|       NOTRNA = LSAME( TRANA, 'N' )
 | |
|       NOTRNB = LSAME( TRANB, 'N' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTRSYL', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       SCALE = ONE
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set constants to control overflow
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SMLNUM*REAL( M*N ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       SMIN = MAX( SMLNUM, EPS*CLANGE( 'M', M, M, A, LDA, DUM ),
 | |
|      $       EPS*CLANGE( 'M', N, N, B, LDB, DUM ) )
 | |
|       SGN = ISGN
 | |
| *
 | |
|       IF( NOTRNA .AND. NOTRNB ) THEN
 | |
| *
 | |
| *        Solve    A*X + ISGN*X*B = scale*C.
 | |
| *
 | |
| *        The (K,L)th block of X is determined starting from
 | |
| *        bottom-left corner column by column by
 | |
| *
 | |
| *            A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
 | |
| *
 | |
| *        Where
 | |
| *                    M                        L-1
 | |
| *          R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
 | |
| *                  I=K+1                      J=1
 | |
| *
 | |
|          DO 30 L = 1, N
 | |
|             DO 20 K = M, 1, -1
 | |
| *
 | |
|                SUML = CDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
 | |
|      $                C( MIN( K+1, M ), L ), 1 )
 | |
|                SUMR = CDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
 | |
|                VEC = C( K, L ) - ( SUML+SGN*SUMR )
 | |
| *
 | |
|                SCALOC = ONE
 | |
|                A11 = A( K, K ) + SGN*B( L, L )
 | |
|                DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) )
 | |
|                IF( DA11.LE.SMIN ) THEN
 | |
|                   A11 = SMIN
 | |
|                   DA11 = SMIN
 | |
|                   INFO = 1
 | |
|                END IF
 | |
|                DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) )
 | |
|                IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
 | |
|                   IF( DB.GT.BIGNUM*DA11 )
 | |
|      $               SCALOC = ONE / DB
 | |
|                END IF
 | |
|                X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 )
 | |
| *
 | |
|                IF( SCALOC.NE.ONE ) THEN
 | |
|                   DO 10 J = 1, N
 | |
|                      CALL CSSCAL( M, SCALOC, C( 1, J ), 1 )
 | |
|    10             CONTINUE
 | |
|                   SCALE = SCALE*SCALOC
 | |
|                END IF
 | |
|                C( K, L ) = X11
 | |
| *
 | |
|    20       CONTINUE
 | |
|    30    CONTINUE
 | |
| *
 | |
|       ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
 | |
| *
 | |
| *        Solve    A**H *X + ISGN*X*B = scale*C.
 | |
| *
 | |
| *        The (K,L)th block of X is determined starting from
 | |
| *        upper-left corner column by column by
 | |
| *
 | |
| *            A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
 | |
| *
 | |
| *        Where
 | |
| *                   K-1                           L-1
 | |
| *          R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
 | |
| *                   I=1                           J=1
 | |
| *
 | |
|          DO 60 L = 1, N
 | |
|             DO 50 K = 1, M
 | |
| *
 | |
|                SUML = CDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
 | |
|                SUMR = CDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
 | |
|                VEC = C( K, L ) - ( SUML+SGN*SUMR )
 | |
| *
 | |
|                SCALOC = ONE
 | |
|                A11 = CONJG( A( K, K ) ) + SGN*B( L, L )
 | |
|                DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) )
 | |
|                IF( DA11.LE.SMIN ) THEN
 | |
|                   A11 = SMIN
 | |
|                   DA11 = SMIN
 | |
|                   INFO = 1
 | |
|                END IF
 | |
|                DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) )
 | |
|                IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
 | |
|                   IF( DB.GT.BIGNUM*DA11 )
 | |
|      $               SCALOC = ONE / DB
 | |
|                END IF
 | |
| *
 | |
|                X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 )
 | |
| *
 | |
|                IF( SCALOC.NE.ONE ) THEN
 | |
|                   DO 40 J = 1, N
 | |
|                      CALL CSSCAL( M, SCALOC, C( 1, J ), 1 )
 | |
|    40             CONTINUE
 | |
|                   SCALE = SCALE*SCALOC
 | |
|                END IF
 | |
|                C( K, L ) = X11
 | |
| *
 | |
|    50       CONTINUE
 | |
|    60    CONTINUE
 | |
| *
 | |
|       ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
 | |
| *
 | |
| *        Solve    A**H*X + ISGN*X*B**H = C.
 | |
| *
 | |
| *        The (K,L)th block of X is determined starting from
 | |
| *        upper-right corner column by column by
 | |
| *
 | |
| *            A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
 | |
| *
 | |
| *        Where
 | |
| *                    K-1
 | |
| *           R(K,L) = SUM [A**H(I,K)*X(I,L)] +
 | |
| *                    I=1
 | |
| *                           N
 | |
| *                     ISGN*SUM [X(K,J)*B**H(L,J)].
 | |
| *                          J=L+1
 | |
| *
 | |
|          DO 90 L = N, 1, -1
 | |
|             DO 80 K = 1, M
 | |
| *
 | |
|                SUML = CDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
 | |
|                SUMR = CDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
 | |
|      $                B( L, MIN( L+1, N ) ), LDB )
 | |
|                VEC = C( K, L ) - ( SUML+SGN*CONJG( SUMR ) )
 | |
| *
 | |
|                SCALOC = ONE
 | |
|                A11 = CONJG( A( K, K )+SGN*B( L, L ) )
 | |
|                DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) )
 | |
|                IF( DA11.LE.SMIN ) THEN
 | |
|                   A11 = SMIN
 | |
|                   DA11 = SMIN
 | |
|                   INFO = 1
 | |
|                END IF
 | |
|                DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) )
 | |
|                IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
 | |
|                   IF( DB.GT.BIGNUM*DA11 )
 | |
|      $               SCALOC = ONE / DB
 | |
|                END IF
 | |
| *
 | |
|                X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 )
 | |
| *
 | |
|                IF( SCALOC.NE.ONE ) THEN
 | |
|                   DO 70 J = 1, N
 | |
|                      CALL CSSCAL( M, SCALOC, C( 1, J ), 1 )
 | |
|    70             CONTINUE
 | |
|                   SCALE = SCALE*SCALOC
 | |
|                END IF
 | |
|                C( K, L ) = X11
 | |
| *
 | |
|    80       CONTINUE
 | |
|    90    CONTINUE
 | |
| *
 | |
|       ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
 | |
| *
 | |
| *        Solve    A*X + ISGN*X*B**H = C.
 | |
| *
 | |
| *        The (K,L)th block of X is determined starting from
 | |
| *        bottom-left corner column by column by
 | |
| *
 | |
| *           A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
 | |
| *
 | |
| *        Where
 | |
| *                    M                          N
 | |
| *          R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)]
 | |
| *                  I=K+1                      J=L+1
 | |
| *
 | |
|          DO 120 L = N, 1, -1
 | |
|             DO 110 K = M, 1, -1
 | |
| *
 | |
|                SUML = CDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
 | |
|      $                C( MIN( K+1, M ), L ), 1 )
 | |
|                SUMR = CDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
 | |
|      $                B( L, MIN( L+1, N ) ), LDB )
 | |
|                VEC = C( K, L ) - ( SUML+SGN*CONJG( SUMR ) )
 | |
| *
 | |
|                SCALOC = ONE
 | |
|                A11 = A( K, K ) + SGN*CONJG( B( L, L ) )
 | |
|                DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) )
 | |
|                IF( DA11.LE.SMIN ) THEN
 | |
|                   A11 = SMIN
 | |
|                   DA11 = SMIN
 | |
|                   INFO = 1
 | |
|                END IF
 | |
|                DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) )
 | |
|                IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
 | |
|                   IF( DB.GT.BIGNUM*DA11 )
 | |
|      $               SCALOC = ONE / DB
 | |
|                END IF
 | |
| *
 | |
|                X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 )
 | |
| *
 | |
|                IF( SCALOC.NE.ONE ) THEN
 | |
|                   DO 100 J = 1, N
 | |
|                      CALL CSSCAL( M, SCALOC, C( 1, J ), 1 )
 | |
|   100             CONTINUE
 | |
|                   SCALE = SCALE*SCALOC
 | |
|                END IF
 | |
|                C( K, L ) = X11
 | |
| *
 | |
|   110       CONTINUE
 | |
|   120    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTRSYL
 | |
| *
 | |
|       END
 |