484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTREVC
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTREVC + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrevc.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrevc.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrevc.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
| *                          LDVR, MM, M, WORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          HOWMNY, SIDE
 | |
| *       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTREVC computes some or all of the right and/or left eigenvectors of
 | |
| *> a complex upper triangular matrix T.
 | |
| *> Matrices of this type are produced by the Schur factorization of
 | |
| *> a complex general matrix:  A = Q*T*Q**H, as computed by CHSEQR.
 | |
| *>
 | |
| *> The right eigenvector x and the left eigenvector y of T corresponding
 | |
| *> to an eigenvalue w are defined by:
 | |
| *>
 | |
| *>              T*x = w*x,     (y**H)*T = w*(y**H)
 | |
| *>
 | |
| *> where y**H denotes the conjugate transpose of the vector y.
 | |
| *> The eigenvalues are not input to this routine, but are read directly
 | |
| *> from the diagonal of T.
 | |
| *>
 | |
| *> This routine returns the matrices X and/or Y of right and left
 | |
| *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
 | |
| *> input matrix.  If Q is the unitary factor that reduces a matrix A to
 | |
| *> Schur form T, then Q*X and Q*Y are the matrices of right and left
 | |
| *> eigenvectors of A.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'R':  compute right eigenvectors only;
 | |
| *>          = 'L':  compute left eigenvectors only;
 | |
| *>          = 'B':  compute both right and left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] HOWMNY
 | |
| *> \verbatim
 | |
| *>          HOWMNY is CHARACTER*1
 | |
| *>          = 'A':  compute all right and/or left eigenvectors;
 | |
| *>          = 'B':  compute all right and/or left eigenvectors,
 | |
| *>                  backtransformed using the matrices supplied in
 | |
| *>                  VR and/or VL;
 | |
| *>          = 'S':  compute selected right and/or left eigenvectors,
 | |
| *>                  as indicated by the logical array SELECT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
 | |
| *>          computed.
 | |
| *>          The eigenvector corresponding to the j-th eigenvalue is
 | |
| *>          computed if SELECT(j) = .TRUE..
 | |
| *>          Not referenced if HOWMNY = 'A' or 'B'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix T. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDT,N)
 | |
| *>          The upper triangular matrix T.  T is modified, but restored
 | |
| *>          on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VL
 | |
| *> \verbatim
 | |
| *>          VL is COMPLEX array, dimension (LDVL,MM)
 | |
| *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
 | |
| *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
 | |
| *>          Schur vectors returned by CHSEQR).
 | |
| *>          On exit, if SIDE = 'L' or 'B', VL contains:
 | |
| *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
 | |
| *>          if HOWMNY = 'B', the matrix Q*Y;
 | |
| *>          if HOWMNY = 'S', the left eigenvectors of T specified by
 | |
| *>                           SELECT, stored consecutively in the columns
 | |
| *>                           of VL, in the same order as their
 | |
| *>                           eigenvalues.
 | |
| *>          Not referenced if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.  LDVL >= 1, and if
 | |
| *>          SIDE = 'L' or 'B', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VR
 | |
| *> \verbatim
 | |
| *>          VR is COMPLEX array, dimension (LDVR,MM)
 | |
| *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
 | |
| *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
 | |
| *>          Schur vectors returned by CHSEQR).
 | |
| *>          On exit, if SIDE = 'R' or 'B', VR contains:
 | |
| *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
 | |
| *>          if HOWMNY = 'B', the matrix Q*X;
 | |
| *>          if HOWMNY = 'S', the right eigenvectors of T specified by
 | |
| *>                           SELECT, stored consecutively in the columns
 | |
| *>                           of VR, in the same order as their
 | |
| *>                           eigenvalues.
 | |
| *>          Not referenced if SIDE = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.  LDVR >= 1, and if
 | |
| *>          SIDE = 'R' or 'B'; LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MM
 | |
| *> \verbatim
 | |
| *>          MM is INTEGER
 | |
| *>          The number of columns in the arrays VL and/or VR. MM >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns in the arrays VL and/or VR actually
 | |
| *>          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
 | |
| *>          is set to N.  Each selected eigenvector occupies one
 | |
| *>          column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The algorithm used in this program is basically backward (forward)
 | |
| *>  substitution, with scaling to make the the code robust against
 | |
| *>  possible overflow.
 | |
| *>
 | |
| *>  Each eigenvector is normalized so that the element of largest
 | |
| *>  magnitude has magnitude 1; here the magnitude of a complex number
 | |
| *>  (x,y) is taken to be |x| + |y|.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
|      $                   LDVR, MM, M, WORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          HOWMNY, SIDE
 | |
|       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CMZERO, CMONE
 | |
|       PARAMETER          ( CMZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CMONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
 | |
|       INTEGER            I, II, IS, J, K, KI
 | |
|       REAL               OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
 | |
|       COMPLEX            CDUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               SCASUM, SLAMCH
 | |
|       EXTERNAL           LSAME, ICAMAX, SCASUM, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CGEMV, CLATRS, CSSCAL, SLABAD, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       BOTHV = LSAME( SIDE, 'B' )
 | |
|       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
 | |
|       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
 | |
| *
 | |
|       ALLV = LSAME( HOWMNY, 'A' )
 | |
|       OVER = LSAME( HOWMNY, 'B' )
 | |
|       SOMEV = LSAME( HOWMNY, 'S' )
 | |
| *
 | |
| *     Set M to the number of columns required to store the selected
 | |
| *     eigenvectors.
 | |
| *
 | |
|       IF( SOMEV ) THEN
 | |
|          M = 0
 | |
|          DO 10 J = 1, N
 | |
|             IF( SELECT( J ) )
 | |
|      $         M = M + 1
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          M = N
 | |
|       END IF
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( MM.LT.M ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTREVC', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set the constants to control overflow.
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       CALL SLABAD( UNFL, OVFL )
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
|       SMLNUM = UNFL*( N / ULP )
 | |
| *
 | |
| *     Store the diagonal elements of T in working array WORK.
 | |
| *
 | |
|       DO 20 I = 1, N
 | |
|          WORK( I+N ) = T( I, I )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Compute 1-norm of each column of strictly upper triangular
 | |
| *     part of T to control overflow in triangular solver.
 | |
| *
 | |
|       RWORK( 1 ) = ZERO
 | |
|       DO 30 J = 2, N
 | |
|          RWORK( J ) = SCASUM( J-1, T( 1, J ), 1 )
 | |
|    30 CONTINUE
 | |
| *
 | |
|       IF( RIGHTV ) THEN
 | |
| *
 | |
| *        Compute right eigenvectors.
 | |
| *
 | |
|          IS = M
 | |
|          DO 80 KI = N, 1, -1
 | |
| *
 | |
|             IF( SOMEV ) THEN
 | |
|                IF( .NOT.SELECT( KI ) )
 | |
|      $            GO TO 80
 | |
|             END IF
 | |
|             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
 | |
| *
 | |
|             WORK( 1 ) = CMONE
 | |
| *
 | |
| *           Form right-hand side.
 | |
| *
 | |
|             DO 40 K = 1, KI - 1
 | |
|                WORK( K ) = -T( K, KI )
 | |
|    40       CONTINUE
 | |
| *
 | |
| *           Solve the triangular system:
 | |
| *              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
 | |
| *
 | |
|             DO 50 K = 1, KI - 1
 | |
|                T( K, K ) = T( K, K ) - T( KI, KI )
 | |
|                IF( CABS1( T( K, K ) ).LT.SMIN )
 | |
|      $            T( K, K ) = SMIN
 | |
|    50       CONTINUE
 | |
| *
 | |
|             IF( KI.GT.1 ) THEN
 | |
|                CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
 | |
|      $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
 | |
|      $                      INFO )
 | |
|                WORK( KI ) = SCALE
 | |
|             END IF
 | |
| *
 | |
| *           Copy the vector x or Q*x to VR and normalize.
 | |
| *
 | |
|             IF( .NOT.OVER ) THEN
 | |
|                CALL CCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
 | |
| *
 | |
|                II = ICAMAX( KI, VR( 1, IS ), 1 )
 | |
|                REMAX = ONE / CABS1( VR( II, IS ) )
 | |
|                CALL CSSCAL( KI, REMAX, VR( 1, IS ), 1 )
 | |
| *
 | |
|                DO 60 K = KI + 1, N
 | |
|                   VR( K, IS ) = CMZERO
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                IF( KI.GT.1 )
 | |
|      $            CALL CGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
 | |
|      $                        1, CMPLX( SCALE ), VR( 1, KI ), 1 )
 | |
| *
 | |
|                II = ICAMAX( N, VR( 1, KI ), 1 )
 | |
|                REMAX = ONE / CABS1( VR( II, KI ) )
 | |
|                CALL CSSCAL( N, REMAX, VR( 1, KI ), 1 )
 | |
|             END IF
 | |
| *
 | |
| *           Set back the original diagonal elements of T.
 | |
| *
 | |
|             DO 70 K = 1, KI - 1
 | |
|                T( K, K ) = WORK( K+N )
 | |
|    70       CONTINUE
 | |
| *
 | |
|             IS = IS - 1
 | |
|    80    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( LEFTV ) THEN
 | |
| *
 | |
| *        Compute left eigenvectors.
 | |
| *
 | |
|          IS = 1
 | |
|          DO 130 KI = 1, N
 | |
| *
 | |
|             IF( SOMEV ) THEN
 | |
|                IF( .NOT.SELECT( KI ) )
 | |
|      $            GO TO 130
 | |
|             END IF
 | |
|             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
 | |
| *
 | |
|             WORK( N ) = CMONE
 | |
| *
 | |
| *           Form right-hand side.
 | |
| *
 | |
|             DO 90 K = KI + 1, N
 | |
|                WORK( K ) = -CONJG( T( KI, K ) )
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           Solve the triangular system:
 | |
| *              (T(KI+1:N,KI+1:N) - T(KI,KI))**H*X = SCALE*WORK.
 | |
| *
 | |
|             DO 100 K = KI + 1, N
 | |
|                T( K, K ) = T( K, K ) - T( KI, KI )
 | |
|                IF( CABS1( T( K, K ) ).LT.SMIN )
 | |
|      $            T( K, K ) = SMIN
 | |
|   100       CONTINUE
 | |
| *
 | |
|             IF( KI.LT.N ) THEN
 | |
|                CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
 | |
|      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
 | |
|      $                      WORK( KI+1 ), SCALE, RWORK, INFO )
 | |
|                WORK( KI ) = SCALE
 | |
|             END IF
 | |
| *
 | |
| *           Copy the vector x or Q*x to VL and normalize.
 | |
| *
 | |
|             IF( .NOT.OVER ) THEN
 | |
|                CALL CCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
 | |
| *
 | |
|                II = ICAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
 | |
|                REMAX = ONE / CABS1( VL( II, IS ) )
 | |
|                CALL CSSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
 | |
| *
 | |
|                DO 110 K = 1, KI - 1
 | |
|                   VL( K, IS ) = CMZERO
 | |
|   110          CONTINUE
 | |
|             ELSE
 | |
|                IF( KI.LT.N )
 | |
|      $            CALL CGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
 | |
|      $                        WORK( KI+1 ), 1, CMPLX( SCALE ),
 | |
|      $                        VL( 1, KI ), 1 )
 | |
| *
 | |
|                II = ICAMAX( N, VL( 1, KI ), 1 )
 | |
|                REMAX = ONE / CABS1( VL( II, KI ) )
 | |
|                CALL CSSCAL( N, REMAX, VL( 1, KI ), 1 )
 | |
|             END IF
 | |
| *
 | |
| *           Set back the original diagonal elements of T.
 | |
| *
 | |
|             DO 120 K = KI + 1, N
 | |
|                T( K, K ) = WORK( K+N )
 | |
|   120       CONTINUE
 | |
| *
 | |
|             IS = IS + 1
 | |
|   130    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTREVC
 | |
| *
 | |
|       END
 |