300 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTPQRT2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpqrt2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpqrt2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpqrt2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER   INFO, LDA, LDB, LDT, N, M, L
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX   A( LDA, * ), B( LDB, * ), T( LDT, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTPQRT2 computes a QR factorization of a complex "triangular-pentagonal"
 | |
| *> matrix C, which is composed of a triangular block A and pentagonal block B,
 | |
| *> using the compact WY representation for Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of rows of the matrix B.
 | |
| *>          M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix B, and the order of
 | |
| *>          the triangular matrix A.
 | |
| *>          N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>          The number of rows of the upper trapezoidal part of B.
 | |
| *>          MIN(M,N) >= L >= 0.  See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the upper triangular N-by-N matrix A.
 | |
| *>          On exit, the elements on and above the diagonal of the array
 | |
| *>          contain the upper triangular matrix R.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows
 | |
| *>          are rectangular, and the last L rows are upper trapezoidal.
 | |
| *>          On exit, B contains the pentagonal matrix V.  See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDT,N)
 | |
| *>          The N-by-N upper triangular factor T of the block reflector.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The input matrix C is a (N+M)-by-N matrix
 | |
| *>
 | |
| *>               C = [ A ]
 | |
| *>                   [ B ]
 | |
| *>
 | |
| *>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
 | |
| *>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
 | |
| *>  upper trapezoidal matrix B2:
 | |
| *>
 | |
| *>               B = [ B1 ]  <- (M-L)-by-N rectangular
 | |
| *>                   [ B2 ]  <-     L-by-N upper trapezoidal.
 | |
| *>
 | |
| *>  The upper trapezoidal matrix B2 consists of the first L rows of a
 | |
| *>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
 | |
| *>  B is rectangular M-by-N; if M=L=N, B is upper triangular.
 | |
| *>
 | |
| *>  The matrix W stores the elementary reflectors H(i) in the i-th column
 | |
| *>  below the diagonal (of A) in the (N+M)-by-N input matrix C
 | |
| *>
 | |
| *>               C = [ A ]  <- upper triangular N-by-N
 | |
| *>                   [ B ]  <- M-by-N pentagonal
 | |
| *>
 | |
| *>  so that W can be represented as
 | |
| *>
 | |
| *>               W = [ I ]  <- identity, N-by-N
 | |
| *>                   [ V ]  <- M-by-N, same form as B.
 | |
| *>
 | |
| *>  Thus, all of information needed for W is contained on exit in B, which
 | |
| *>  we call V above.  Note that V has the same form as B; that is,
 | |
| *>
 | |
| *>               V = [ V1 ] <- (M-L)-by-N rectangular
 | |
| *>                   [ V2 ] <-     L-by-N upper trapezoidal.
 | |
| *>
 | |
| *>  The columns of V represent the vectors which define the H(i)'s.
 | |
| *>  The (M+N)-by-(M+N) block reflector H is then given by
 | |
| *>
 | |
| *>               H = I - W * T * W**H
 | |
| *>
 | |
| *>  where W**H is the conjugate transpose of W and T is the upper triangular
 | |
| *>  factor of the block reflector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER   INFO, LDA, LDB, LDT, N, M, L
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX   A( LDA, * ), B( LDB, * ), T( LDT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX  ONE, ZERO
 | |
|       PARAMETER( ONE = (1.0,0.0), ZERO = (0.0,0.0) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER   I, J, P, MP, NP
 | |
|       COMPLEX   ALPHA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL  CLARFG, CGEMV, CGERC, CTRMV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTPQRT2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. M.EQ.0 ) RETURN
 | |
| *
 | |
|       DO I = 1, N
 | |
| *
 | |
| *        Generate elementary reflector H(I) to annihilate B(:,I)
 | |
| *
 | |
|          P = M-L+MIN( L, I )
 | |
|          CALL CLARFG( P+1, A( I, I ), B( 1, I ), 1, T( I, 1 ) )
 | |
|          IF( I.LT.N ) THEN
 | |
| *
 | |
| *           W(1:N-I) := C(I:M,I+1:N)**H * C(I:M,I) [use W = T(:,N)]
 | |
| *
 | |
|             DO J = 1, N-I
 | |
|                T( J, N ) = CONJG(A( I, I+J ))
 | |
|             END DO
 | |
|             CALL CGEMV( 'C', P, N-I, ONE, B( 1, I+1 ), LDB,
 | |
|      $                  B( 1, I ), 1, ONE, T( 1, N ), 1 )
 | |
| *
 | |
| *           C(I:M,I+1:N) = C(I:m,I+1:N) + alpha*C(I:M,I)*W(1:N-1)**H
 | |
| *
 | |
|             ALPHA = -CONJG(T( I, 1 ))
 | |
|             DO J = 1, N-I
 | |
|                A( I, I+J ) = A( I, I+J ) + ALPHA*CONJG(T( J, N ))
 | |
|             END DO
 | |
|             CALL CGERC( P, N-I, ALPHA, B( 1, I ), 1,
 | |
|      $           T( 1, N ), 1, B( 1, I+1 ), LDB )
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
|       DO I = 2, N
 | |
| *
 | |
| *        T(1:I-1,I) := C(I:M,1:I-1)**H * (alpha * C(I:M,I))
 | |
| *
 | |
|          ALPHA = -T( I, 1 )
 | |
| 
 | |
|          DO J = 1, I-1
 | |
|             T( J, I ) = ZERO
 | |
|          END DO
 | |
|          P = MIN( I-1, L )
 | |
|          MP = MIN( M-L+1, M )
 | |
|          NP = MIN( P+1, N )
 | |
| *
 | |
| *        Triangular part of B2
 | |
| *
 | |
|          DO J = 1, P
 | |
|             T( J, I ) = ALPHA*B( M-L+J, I )
 | |
|          END DO
 | |
|          CALL CTRMV( 'U', 'C', 'N', P, B( MP, 1 ), LDB,
 | |
|      $               T( 1, I ), 1 )
 | |
| *
 | |
| *        Rectangular part of B2
 | |
| *
 | |
|          CALL CGEMV( 'C', L, I-1-P, ALPHA, B( MP, NP ), LDB,
 | |
|      $               B( MP, I ), 1, ZERO, T( NP, I ), 1 )
 | |
| *
 | |
| *        B1
 | |
| *
 | |
|          CALL CGEMV( 'C', M-L, I-1, ALPHA, B, LDB, B( 1, I ), 1,
 | |
|      $               ONE, T( 1, I ), 1 )
 | |
| *
 | |
| *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
 | |
| *
 | |
|          CALL CTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
 | |
| *
 | |
| *        T(I,I) = tau(I)
 | |
| *
 | |
|          T( I, I ) = T( I, 1 )
 | |
|          T( I, 1 ) = ZERO
 | |
|       END DO
 | |
| 
 | |
| *
 | |
| *     End of CTPQRT2
 | |
| *
 | |
|       END
 |