1066 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1066 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b CTGSY2 solves the generalized Sylvester equation (unblocked algorithm). */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CTGSY2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsy2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsy2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsy2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, */
 | |
| /*                          LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, */
 | |
| /*                          INFO ) */
 | |
| 
 | |
| /*       CHARACTER          TRANS */
 | |
| /*       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N */
 | |
| /*       REAL               RDSCAL, RDSUM, SCALE */
 | |
| /*       COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * ), */
 | |
| /*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CTGSY2 solves the generalized Sylvester equation */
 | |
| /* > */
 | |
| /* >             A * R - L * B = scale *  C               (1) */
 | |
| /* >             D * R - L * E = scale * F */
 | |
| /* > */
 | |
| /* > using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, */
 | |
| /* > (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
 | |
| /* > N-by-N and M-by-N, respectively. A, B, D and E are upper triangular */
 | |
| /* > (i.e., (A,D) and (B,E) in generalized Schur form). */
 | |
| /* > */
 | |
| /* > The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
 | |
| /* > scaling factor chosen to avoid overflow. */
 | |
| /* > */
 | |
| /* > In matrix notation solving equation (1) corresponds to solve */
 | |
| /* > Zx = scale * b, where Z is defined as */
 | |
| /* > */
 | |
| /* >        Z = [ kron(In, A)  -kron(B**H, Im) ]             (2) */
 | |
| /* >            [ kron(In, D)  -kron(E**H, Im) ], */
 | |
| /* > */
 | |
| /* > Ik is the identity matrix of size k and X**H is the transpose of X. */
 | |
| /* > kron(X, Y) is the Kronecker product between the matrices X and Y. */
 | |
| /* > */
 | |
| /* > If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b */
 | |
| /* > is solved for, which is equivalent to solve for R and L in */
 | |
| /* > */
 | |
| /* >             A**H * R  + D**H * L   = scale * C           (3) */
 | |
| /* >             R  * B**H + L  * E**H  = scale * -F */
 | |
| /* > */
 | |
| /* > This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
 | |
| /* > = sigma_min(Z) using reverse communication with CLACON. */
 | |
| /* > */
 | |
| /* > CTGSY2 also (IJOB >= 1) contributes to the computation in CTGSYL */
 | |
| /* > of an upper bound on the separation between to matrix pairs. Then */
 | |
| /* > the input (A, D), (B, E) are sub-pencils of two matrix pairs in */
 | |
| /* > CTGSYL. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          = 'N': solve the generalized Sylvester equation (1). */
 | |
| /* >          = 'T': solve the 'transposed' system (3). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IJOB */
 | |
| /* > \verbatim */
 | |
| /* >          IJOB is INTEGER */
 | |
| /* >          Specifies what kind of functionality to be performed. */
 | |
| /* >          = 0: solve (1) only. */
 | |
| /* >          = 1: A contribution from this subsystem to a Frobenius */
 | |
| /* >               norm-based estimate of the separation between two matrix */
 | |
| /* >               pairs is computed. (look ahead strategy is used). */
 | |
| /* >          = 2: A contribution from this subsystem to a Frobenius */
 | |
| /* >               norm-based estimate of the separation between two matrix */
 | |
| /* >               pairs is computed. (SGECON on sub-systems is used.) */
 | |
| /* >          Not referenced if TRANS = 'T'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          On entry, M specifies the order of A and D, and the row */
 | |
| /* >          dimension of C, F, R and L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          On entry, N specifies the order of B and E, and the column */
 | |
| /* >          dimension of C, F, R and L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA, M) */
 | |
| /* >          On entry, A contains an upper triangular matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the matrix A. LDA >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX array, dimension (LDB, N) */
 | |
| /* >          On entry, B contains an upper triangular matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the matrix B. LDB >= f2cmax(1, N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is COMPLEX array, dimension (LDC, N) */
 | |
| /* >          On entry, C contains the right-hand-side of the first matrix */
 | |
| /* >          equation in (1). */
 | |
| /* >          On exit, if IJOB = 0, C has been overwritten by the solution */
 | |
| /* >          R. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the matrix C. LDC >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is COMPLEX array, dimension (LDD, M) */
 | |
| /* >          On entry, D contains an upper triangular matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDD */
 | |
| /* > \verbatim */
 | |
| /* >          LDD is INTEGER */
 | |
| /* >          The leading dimension of the matrix D. LDD >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is COMPLEX array, dimension (LDE, N) */
 | |
| /* >          On entry, E contains an upper triangular matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDE */
 | |
| /* > \verbatim */
 | |
| /* >          LDE is INTEGER */
 | |
| /* >          The leading dimension of the matrix E. LDE >= f2cmax(1, N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] F */
 | |
| /* > \verbatim */
 | |
| /* >          F is COMPLEX array, dimension (LDF, N) */
 | |
| /* >          On entry, F contains the right-hand-side of the second matrix */
 | |
| /* >          equation in (1). */
 | |
| /* >          On exit, if IJOB = 0, F has been overwritten by the solution */
 | |
| /* >          L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDF */
 | |
| /* > \verbatim */
 | |
| /* >          LDF is INTEGER */
 | |
| /* >          The leading dimension of the matrix F. LDF >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is REAL */
 | |
| /* >          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
 | |
| /* >          R and L (C and F on entry) will hold the solutions to a */
 | |
| /* >          slightly perturbed system but the input matrices A, B, D and */
 | |
| /* >          E have not been changed. If SCALE = 0, R and L will hold the */
 | |
| /* >          solutions to the homogeneous system with C = F = 0. */
 | |
| /* >          Normally, SCALE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] RDSUM */
 | |
| /* > \verbatim */
 | |
| /* >          RDSUM is REAL */
 | |
| /* >          On entry, the sum of squares of computed contributions to */
 | |
| /* >          the Dif-estimate under computation by CTGSYL, where the */
 | |
| /* >          scaling factor RDSCAL (see below) has been factored out. */
 | |
| /* >          On exit, the corresponding sum of squares updated with the */
 | |
| /* >          contributions from the current sub-system. */
 | |
| /* >          If TRANS = 'T' RDSUM is not touched. */
 | |
| /* >          NOTE: RDSUM only makes sense when CTGSY2 is called by */
 | |
| /* >          CTGSYL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] RDSCAL */
 | |
| /* > \verbatim */
 | |
| /* >          RDSCAL is REAL */
 | |
| /* >          On entry, scaling factor used to prevent overflow in RDSUM. */
 | |
| /* >          On exit, RDSCAL is updated w.r.t. the current contributions */
 | |
| /* >          in RDSUM. */
 | |
| /* >          If TRANS = 'T', RDSCAL is not touched. */
 | |
| /* >          NOTE: RDSCAL only makes sense when CTGSY2 is called by */
 | |
| /* >          CTGSYL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          On exit, if INFO is set to */
 | |
| /* >            =0: Successful exit */
 | |
| /* >            <0: If INFO = -i, input argument number i is illegal. */
 | |
| /* >            >0: The matrix pairs (A, D) and (B, E) have common or very */
 | |
| /* >                close eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complexSYauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 | |
| /* >     Umea University, S-901 87 Umea, Sweden. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ctgsy2_(char *trans, integer *ijob, integer *m, integer *
 | |
| 	n, complex *a, integer *lda, complex *b, integer *ldb, complex *c__, 
 | |
| 	integer *ldc, complex *d__, integer *ldd, complex *e, integer *lde, 
 | |
| 	complex *f, integer *ldf, real *scale, real *rdsum, real *rdscal, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, 
 | |
| 	    d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3, 
 | |
| 	    i__4;
 | |
|     complex q__1, q__2, q__3, q__4, q__5, q__6;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ierr, ipiv[2], jpiv[2], i__, j, k;
 | |
|     complex alpha;
 | |
|     extern /* Subroutine */ void cscal_(integer *, complex *, complex *, 
 | |
| 	    integer *);
 | |
|     complex z__[4]	/* was [2][2] */;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void caxpy_(integer *, complex *, complex *, 
 | |
| 	    integer *, complex *, integer *), cgesc2_(integer *, complex *, 
 | |
| 	    integer *, complex *, integer *, integer *, real *), cgetc2_(
 | |
| 	    integer *, complex *, integer *, integer *, integer *, integer *),
 | |
| 	     clatdf_(integer *, integer *, complex *, integer *, complex *, 
 | |
| 	    real *, real *, integer *, integer *);
 | |
|     real scaloc;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     logical notran;
 | |
|     complex rhs[2];
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     d_dim1 = *ldd;
 | |
|     d_offset = 1 + d_dim1 * 1;
 | |
|     d__ -= d_offset;
 | |
|     e_dim1 = *lde;
 | |
|     e_offset = 1 + e_dim1 * 1;
 | |
|     e -= e_offset;
 | |
|     f_dim1 = *ldf;
 | |
|     f_offset = 1 + f_dim1 * 1;
 | |
|     f -= f_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     ierr = 0;
 | |
|     notran = lsame_(trans, "N");
 | |
|     if (! notran && ! lsame_(trans, "C")) {
 | |
| 	*info = -1;
 | |
|     } else if (notran) {
 | |
| 	if (*ijob < 0 || *ijob > 2) {
 | |
| 	    *info = -2;
 | |
| 	}
 | |
|     }
 | |
|     if (*info == 0) {
 | |
| 	if (*m <= 0) {
 | |
| 	    *info = -3;
 | |
| 	} else if (*n <= 0) {
 | |
| 	    *info = -4;
 | |
| 	} else if (*lda < f2cmax(1,*m)) {
 | |
| 	    *info = -6;
 | |
| 	} else if (*ldb < f2cmax(1,*n)) {
 | |
| 	    *info = -8;
 | |
| 	} else if (*ldc < f2cmax(1,*m)) {
 | |
| 	    *info = -10;
 | |
| 	} else if (*ldd < f2cmax(1,*m)) {
 | |
| 	    *info = -12;
 | |
| 	} else if (*lde < f2cmax(1,*n)) {
 | |
| 	    *info = -14;
 | |
| 	} else if (*ldf < f2cmax(1,*m)) {
 | |
| 	    *info = -16;
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CTGSY2", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (notran) {
 | |
| 
 | |
| /*        Solve (I, J) - system */
 | |
| /*           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
 | |
| /*           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
 | |
| /*        for I = M, M - 1, ..., 1; J = 1, 2, ..., N */
 | |
| 
 | |
| 	*scale = 1.f;
 | |
| 	scaloc = 1.f;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    for (i__ = *m; i__ >= 1; --i__) {
 | |
| 
 | |
| /*              Build 2 by 2 system */
 | |
| 
 | |
| 		i__2 = i__ + i__ * a_dim1;
 | |
| 		z__[0].r = a[i__2].r, z__[0].i = a[i__2].i;
 | |
| 		i__2 = i__ + i__ * d_dim1;
 | |
| 		z__[1].r = d__[i__2].r, z__[1].i = d__[i__2].i;
 | |
| 		i__2 = j + j * b_dim1;
 | |
| 		q__1.r = -b[i__2].r, q__1.i = -b[i__2].i;
 | |
| 		z__[2].r = q__1.r, z__[2].i = q__1.i;
 | |
| 		i__2 = j + j * e_dim1;
 | |
| 		q__1.r = -e[i__2].r, q__1.i = -e[i__2].i;
 | |
| 		z__[3].r = q__1.r, z__[3].i = q__1.i;
 | |
| 
 | |
| /*              Set up right hand side(s) */
 | |
| 
 | |
| 		i__2 = i__ + j * c_dim1;
 | |
| 		rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
 | |
| 		i__2 = i__ + j * f_dim1;
 | |
| 		rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
 | |
| 
 | |
| /*              Solve Z * x = RHS */
 | |
| 
 | |
| 		cgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
 | |
| 		if (ierr > 0) {
 | |
| 		    *info = ierr;
 | |
| 		}
 | |
| 		if (*ijob == 0) {
 | |
| 		    cgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (k = 1; k <= i__2; ++k) {
 | |
| 			    q__1.r = scaloc, q__1.i = 0.f;
 | |
| 			    cscal_(m, &q__1, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			    q__1.r = scaloc, q__1.i = 0.f;
 | |
| 			    cscal_(m, &q__1, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L10: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    clatdf_(ijob, &c__2, z__, &c__2, rhs, rdsum, rdscal, ipiv,
 | |
| 			     jpiv);
 | |
| 		}
 | |
| 
 | |
| /*              Unpack solution vector(s) */
 | |
| 
 | |
| 		i__2 = i__ + j * c_dim1;
 | |
| 		c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
 | |
| 		i__2 = i__ + j * f_dim1;
 | |
| 		f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
 | |
| 
 | |
| /*              Substitute R(I, J) and L(I, J) into remaining equation. */
 | |
| 
 | |
| 		if (i__ > 1) {
 | |
| 		    q__1.r = -rhs[0].r, q__1.i = -rhs[0].i;
 | |
| 		    alpha.r = q__1.r, alpha.i = q__1.i;
 | |
| 		    i__2 = i__ - 1;
 | |
| 		    caxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &c__[j 
 | |
| 			    * c_dim1 + 1], &c__1);
 | |
| 		    i__2 = i__ - 1;
 | |
| 		    caxpy_(&i__2, &alpha, &d__[i__ * d_dim1 + 1], &c__1, &f[j 
 | |
| 			    * f_dim1 + 1], &c__1);
 | |
| 		}
 | |
| 		if (j < *n) {
 | |
| 		    i__2 = *n - j;
 | |
| 		    caxpy_(&i__2, &rhs[1], &b[j + (j + 1) * b_dim1], ldb, &
 | |
| 			    c__[i__ + (j + 1) * c_dim1], ldc);
 | |
| 		    i__2 = *n - j;
 | |
| 		    caxpy_(&i__2, &rhs[1], &e[j + (j + 1) * e_dim1], lde, &f[
 | |
| 			    i__ + (j + 1) * f_dim1], ldf);
 | |
| 		}
 | |
| 
 | |
| /* L20: */
 | |
| 	    }
 | |
| /* L30: */
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        Solve transposed (I, J) - system: */
 | |
| /*           A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J) */
 | |
| /*           R(I, I) * B(J, J) + L(I, J) * E(J, J)   = -F(I, J) */
 | |
| /*        for I = 1, 2, ..., M, J = N, N - 1, ..., 1 */
 | |
| 
 | |
| 	*scale = 1.f;
 | |
| 	scaloc = 1.f;
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    for (j = *n; j >= 1; --j) {
 | |
| 
 | |
| /*              Build 2 by 2 system Z**H */
 | |
| 
 | |
| 		r_cnjg(&q__1, &a[i__ + i__ * a_dim1]);
 | |
| 		z__[0].r = q__1.r, z__[0].i = q__1.i;
 | |
| 		r_cnjg(&q__2, &b[j + j * b_dim1]);
 | |
| 		q__1.r = -q__2.r, q__1.i = -q__2.i;
 | |
| 		z__[1].r = q__1.r, z__[1].i = q__1.i;
 | |
| 		r_cnjg(&q__1, &d__[i__ + i__ * d_dim1]);
 | |
| 		z__[2].r = q__1.r, z__[2].i = q__1.i;
 | |
| 		r_cnjg(&q__2, &e[j + j * e_dim1]);
 | |
| 		q__1.r = -q__2.r, q__1.i = -q__2.i;
 | |
| 		z__[3].r = q__1.r, z__[3].i = q__1.i;
 | |
| 
 | |
| 
 | |
| /*              Set up right hand side(s) */
 | |
| 
 | |
| 		i__2 = i__ + j * c_dim1;
 | |
| 		rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
 | |
| 		i__2 = i__ + j * f_dim1;
 | |
| 		rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
 | |
| 
 | |
| /*              Solve Z**H * x = RHS */
 | |
| 
 | |
| 		cgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
 | |
| 		if (ierr > 0) {
 | |
| 		    *info = ierr;
 | |
| 		}
 | |
| 		cgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
 | |
| 		if (scaloc != 1.f) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (k = 1; k <= i__2; ++k) {
 | |
| 			q__1.r = scaloc, q__1.i = 0.f;
 | |
| 			cscal_(m, &q__1, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			q__1.r = scaloc, q__1.i = 0.f;
 | |
| 			cscal_(m, &q__1, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L40: */
 | |
| 		    }
 | |
| 		    *scale *= scaloc;
 | |
| 		}
 | |
| 
 | |
| /*              Unpack solution vector(s) */
 | |
| 
 | |
| 		i__2 = i__ + j * c_dim1;
 | |
| 		c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
 | |
| 		i__2 = i__ + j * f_dim1;
 | |
| 		f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
 | |
| 
 | |
| /*              Substitute R(I, J) and L(I, J) into remaining equation. */
 | |
| 
 | |
| 		i__2 = j - 1;
 | |
| 		for (k = 1; k <= i__2; ++k) {
 | |
| 		    i__3 = i__ + k * f_dim1;
 | |
| 		    i__4 = i__ + k * f_dim1;
 | |
| 		    r_cnjg(&q__4, &b[k + j * b_dim1]);
 | |
| 		    q__3.r = rhs[0].r * q__4.r - rhs[0].i * q__4.i, q__3.i = 
 | |
| 			    rhs[0].r * q__4.i + rhs[0].i * q__4.r;
 | |
| 		    q__2.r = f[i__4].r + q__3.r, q__2.i = f[i__4].i + q__3.i;
 | |
| 		    r_cnjg(&q__6, &e[k + j * e_dim1]);
 | |
| 		    q__5.r = rhs[1].r * q__6.r - rhs[1].i * q__6.i, q__5.i = 
 | |
| 			    rhs[1].r * q__6.i + rhs[1].i * q__6.r;
 | |
| 		    q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
 | |
| 		    f[i__3].r = q__1.r, f[i__3].i = q__1.i;
 | |
| /* L50: */
 | |
| 		}
 | |
| 		i__2 = *m;
 | |
| 		for (k = i__ + 1; k <= i__2; ++k) {
 | |
| 		    i__3 = k + j * c_dim1;
 | |
| 		    i__4 = k + j * c_dim1;
 | |
| 		    r_cnjg(&q__4, &a[i__ + k * a_dim1]);
 | |
| 		    q__3.r = q__4.r * rhs[0].r - q__4.i * rhs[0].i, q__3.i = 
 | |
| 			    q__4.r * rhs[0].i + q__4.i * rhs[0].r;
 | |
| 		    q__2.r = c__[i__4].r - q__3.r, q__2.i = c__[i__4].i - 
 | |
| 			    q__3.i;
 | |
| 		    r_cnjg(&q__6, &d__[i__ + k * d_dim1]);
 | |
| 		    q__5.r = q__6.r * rhs[1].r - q__6.i * rhs[1].i, q__5.i = 
 | |
| 			    q__6.r * rhs[1].i + q__6.i * rhs[1].r;
 | |
| 		    q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i;
 | |
| 		    c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
 | |
| /* L60: */
 | |
| 		}
 | |
| 
 | |
| /* L70: */
 | |
| 	    }
 | |
| /* L80: */
 | |
| 	}
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of CTGSY2 */
 | |
| 
 | |
| } /* ctgsy2_ */
 | |
| 
 |