782 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			782 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTGSEN
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTGSEN + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsen.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsen.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsen.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 | |
| *                          ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
 | |
| *                          WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            WANTQ, WANTZ
 | |
| *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
 | |
| *      $                   M, N
 | |
| *       REAL               PL, PR
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               DIF( * )
 | |
| *       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
| *      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTGSEN reorders the generalized Schur decomposition of a complex
 | |
| *> matrix pair (A, B) (in terms of an unitary equivalence trans-
 | |
| *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
 | |
| *> appears in the leading diagonal blocks of the pair (A,B). The leading
 | |
| *> columns of Q and Z form unitary bases of the corresponding left and
 | |
| *> right eigenspaces (deflating subspaces). (A, B) must be in
 | |
| *> generalized Schur canonical form, that is, A and B are both upper
 | |
| *> triangular.
 | |
| *>
 | |
| *> CTGSEN also computes the generalized eigenvalues
 | |
| *>
 | |
| *>          w(j)= ALPHA(j) / BETA(j)
 | |
| *>
 | |
| *> of the reordered matrix pair (A, B).
 | |
| *>
 | |
| *> Optionally, the routine computes estimates of reciprocal condition
 | |
| *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
 | |
| *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
 | |
| *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
 | |
| *> the selected cluster and the eigenvalues outside the cluster, resp.,
 | |
| *> and norms of "projections" onto left and right eigenspaces w.r.t.
 | |
| *> the selected cluster in the (1,1)-block.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IJOB
 | |
| *> \verbatim
 | |
| *>          IJOB is INTEGER
 | |
| *>          Specifies whether condition numbers are required for the
 | |
| *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
 | |
| *>          (Difu and Difl):
 | |
| *>           =0: Only reorder w.r.t. SELECT. No extras.
 | |
| *>           =1: Reciprocal of norms of "projections" onto left and right
 | |
| *>               eigenspaces w.r.t. the selected cluster (PL and PR).
 | |
| *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
 | |
| *>               (DIF(1:2)).
 | |
| *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
 | |
| *>               (DIF(1:2)).
 | |
| *>               About 5 times as expensive as IJOB = 2.
 | |
| *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
 | |
| *>               version to get it all.
 | |
| *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTQ
 | |
| *> \verbatim
 | |
| *>          WANTQ is LOGICAL
 | |
| *>          .TRUE. : update the left transformation matrix Q;
 | |
| *>          .FALSE.: do not update Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          .TRUE. : update the right transformation matrix Z;
 | |
| *>          .FALSE.: do not update Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          SELECT specifies the eigenvalues in the selected cluster. To
 | |
| *>          select an eigenvalue w(j), SELECT(j) must be set to
 | |
| *>          .TRUE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension(LDA,N)
 | |
| *>          On entry, the upper triangular matrix A, in generalized
 | |
| *>          Schur canonical form.
 | |
| *>          On exit, A is overwritten by the reordered matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension(LDB,N)
 | |
| *>          On entry, the upper triangular matrix B, in generalized
 | |
| *>          Schur canonical form.
 | |
| *>          On exit, B is overwritten by the reordered matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX array, dimension (N)
 | |
| *>
 | |
| *>          The diagonal elements of A and B, respectively,
 | |
| *>          when the pair (A,B) has been reduced to generalized Schur
 | |
| *>          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
 | |
| *>          eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ,N)
 | |
| *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
 | |
| *>          On exit, Q has been postmultiplied by the left unitary
 | |
| *>          transformation matrix which reorder (A, B); The leading M
 | |
| *>          columns of Q form orthonormal bases for the specified pair of
 | |
| *>          left eigenspaces (deflating subspaces).
 | |
| *>          If WANTQ = .FALSE., Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q. LDQ >= 1.
 | |
| *>          If WANTQ = .TRUE., LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ,N)
 | |
| *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
 | |
| *>          On exit, Z has been postmultiplied by the left unitary
 | |
| *>          transformation matrix which reorder (A, B); The leading M
 | |
| *>          columns of Z form orthonormal bases for the specified pair of
 | |
| *>          left eigenspaces (deflating subspaces).
 | |
| *>          If WANTZ = .FALSE., Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z. LDZ >= 1.
 | |
| *>          If WANTZ = .TRUE., LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The dimension of the specified pair of left and right
 | |
| *>          eigenspaces, (deflating subspaces) 0 <= M <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PL
 | |
| *> \verbatim
 | |
| *>          PL is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PR
 | |
| *> \verbatim
 | |
| *>          PR is REAL
 | |
| *>
 | |
| *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
 | |
| *>          reciprocal  of the norm of "projections" onto left and right
 | |
| *>          eigenspace with respect to the selected cluster.
 | |
| *>          0 < PL, PR <= 1.
 | |
| *>          If M = 0 or M = N, PL = PR  = 1.
 | |
| *>          If IJOB = 0, 2 or 3 PL, PR are not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIF
 | |
| *> \verbatim
 | |
| *>          DIF is REAL array, dimension (2).
 | |
| *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
 | |
| *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
 | |
| *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
 | |
| *>          estimates of Difu and Difl, computed using reversed
 | |
| *>          communication with CLACN2.
 | |
| *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
 | |
| *>          If IJOB = 0 or 1, DIF is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >=  1
 | |
| *>          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
 | |
| *>          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK. LIWORK >= 1.
 | |
| *>          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
 | |
| *>          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the IWORK array,
 | |
| *>          returns this value as the first entry of the IWORK array, and
 | |
| *>          no error message related to LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>            =0: Successful exit.
 | |
| *>            <0: If INFO = -i, the i-th argument had an illegal value.
 | |
| *>            =1: Reordering of (A, B) failed because the transformed
 | |
| *>                matrix pair (A, B) would be too far from generalized
 | |
| *>                Schur form; the problem is very ill-conditioned.
 | |
| *>                (A, B) may have been partially reordered.
 | |
| *>                If requested, 0 is returned in DIF(*), PL and PR.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  CTGSEN first collects the selected eigenvalues by computing unitary
 | |
| *>  U and W that move them to the top left corner of (A, B). In other
 | |
| *>  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
 | |
| *>
 | |
| *>              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
 | |
| *>                              ( 0  A22),( 0  B22) n2
 | |
| *>                                n1  n2    n1  n2
 | |
| *>
 | |
| *>  where N = n1+n2 and U**H means the conjugate transpose of U. The first
 | |
| *>  n1 columns of U and W span the specified pair of left and right
 | |
| *>  eigenspaces (deflating subspaces) of (A, B).
 | |
| *>
 | |
| *>  If (A, B) has been obtained from the generalized real Schur
 | |
| *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
 | |
| *>  reordered generalized Schur form of (C, D) is given by
 | |
| *>
 | |
| *>           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
 | |
| *>
 | |
| *>  and the first n1 columns of Q*U and Z*W span the corresponding
 | |
| *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
 | |
| *>
 | |
| *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
 | |
| *>  then its value may differ significantly from its value before
 | |
| *>  reordering.
 | |
| *>
 | |
| *>  The reciprocal condition numbers of the left and right eigenspaces
 | |
| *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
 | |
| *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
 | |
| *>
 | |
| *>  The Difu and Difl are defined as:
 | |
| *>
 | |
| *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
 | |
| *>  and
 | |
| *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
 | |
| *>
 | |
| *>  where sigma-min(Zu) is the smallest singular value of the
 | |
| *>  (2*n1*n2)-by-(2*n1*n2) matrix
 | |
| *>
 | |
| *>       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
 | |
| *>            [ kron(In2, B11)  -kron(B22**H, In1) ].
 | |
| *>
 | |
| *>  Here, Inx is the identity matrix of size nx and A22**H is the
 | |
| *>  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
 | |
| *>  the matrices X and Y.
 | |
| *>
 | |
| *>  When DIF(2) is small, small changes in (A, B) can cause large changes
 | |
| *>  in the deflating subspace. An approximate (asymptotic) bound on the
 | |
| *>  maximum angular error in the computed deflating subspaces is
 | |
| *>
 | |
| *>       EPS * norm((A, B)) / DIF(2),
 | |
| *>
 | |
| *>  where EPS is the machine precision.
 | |
| *>
 | |
| *>  The reciprocal norm of the projectors on the left and right
 | |
| *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
 | |
| *>  They are computed as follows. First we compute L and R so that
 | |
| *>  P*(A, B)*Q is block diagonal, where
 | |
| *>
 | |
| *>       P = ( I -L ) n1           Q = ( I R ) n1
 | |
| *>           ( 0  I ) n2    and        ( 0 I ) n2
 | |
| *>             n1 n2                    n1 n2
 | |
| *>
 | |
| *>  and (L, R) is the solution to the generalized Sylvester equation
 | |
| *>
 | |
| *>       A11*R - L*A22 = -A12
 | |
| *>       B11*R - L*B22 = -B12
 | |
| *>
 | |
| *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
 | |
| *>  An approximate (asymptotic) bound on the average absolute error of
 | |
| *>  the selected eigenvalues is
 | |
| *>
 | |
| *>       EPS * norm((A, B)) / PL.
 | |
| *>
 | |
| *>  There are also global error bounds which valid for perturbations up
 | |
| *>  to a certain restriction:  A lower bound (x) on the smallest
 | |
| *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
 | |
| *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
 | |
| *>  (i.e. (A + E, B + F), is
 | |
| *>
 | |
| *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
 | |
| *>
 | |
| *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
 | |
| *>
 | |
| *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
 | |
| *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
 | |
| *>  associated with the selected cluster in the (1,1)-blocks can be
 | |
| *>  bounded as
 | |
| *>
 | |
| *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
 | |
| *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
 | |
| *>
 | |
| *>  See LAPACK User's Guide section 4.11 or the following references
 | |
| *>  for more information.
 | |
| *>
 | |
| *>  Note that if the default method for computing the Frobenius-norm-
 | |
| *>  based estimate DIF is not wanted (see CLATDF), then the parameter
 | |
| *>  IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF
 | |
| *>  (IJOB = 2 will be used)). See CTGSYL for more details.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | |
| *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | |
| *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | |
| *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | |
| *> \n
 | |
| *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | |
| *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | |
| *>      Estimation: Theory, Algorithms and Software, Report
 | |
| *>      UMINF - 94.04, Department of Computing Science, Umea University,
 | |
| *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
 | |
| *>      To appear in Numerical Algorithms, 1996.
 | |
| *> \n
 | |
| *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | |
| *>      for Solving the Generalized Sylvester Equation and Estimating the
 | |
| *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | |
| *>      Department of Computing Science, Umea University, S-901 87 Umea,
 | |
| *>      Sweden, December 1993, Revised April 1994, Also as LAPACK working
 | |
| *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
 | |
| *>      1996.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 | |
|      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
 | |
|      $                   WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            WANTQ, WANTZ
 | |
|       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
 | |
|      $                   M, N
 | |
|       REAL               PL, PR
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               DIF( * )
 | |
|       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | |
|      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            IDIFJB
 | |
|       PARAMETER          ( IDIFJB = 3 )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
 | |
|       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
 | |
|      $                   N1, N2
 | |
|       REAL               DSCALE, DSUM, RDSCAL, SAFMIN
 | |
|       COMPLEX            TEMP1, TEMP2
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           CLACN2, CLACPY, CLASSQ, CSCAL, CTGEXC, CTGSYL,
 | |
|      $                   SLAMCH, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CMPLX, CONJG, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -15
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTGSEN', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IERR = 0
 | |
| *
 | |
|       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
 | |
|       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
 | |
|       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
 | |
|       WANTD = WANTD1 .OR. WANTD2
 | |
| *
 | |
| *     Set M to the dimension of the specified pair of deflating
 | |
| *     subspaces.
 | |
| *
 | |
|       M = 0
 | |
|       IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
 | |
|       DO 10 K = 1, N
 | |
|          ALPHA( K ) = A( K, K )
 | |
|          BETA( K ) = B( K, K )
 | |
|          IF( K.LT.N ) THEN
 | |
|             IF( SELECT( K ) )
 | |
|      $         M = M + 1
 | |
|          ELSE
 | |
|             IF( SELECT( N ) )
 | |
|      $         M = M + 1
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
 | |
|          LWMIN = MAX( 1, 2*M*(N-M) )
 | |
|          LIWMIN = MAX( 1, N+2 )
 | |
|       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
 | |
|          LWMIN = MAX( 1, 4*M*(N-M) )
 | |
|          LIWMIN = MAX( 1, 2*M*(N-M), N+2 )
 | |
|       ELSE
 | |
|          LWMIN = 1
 | |
|          LIWMIN = 1
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -21
 | |
|       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -23
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTGSEN', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( M.EQ.N .OR. M.EQ.0 ) THEN
 | |
|          IF( WANTP ) THEN
 | |
|             PL = ONE
 | |
|             PR = ONE
 | |
|          END IF
 | |
|          IF( WANTD ) THEN
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             DO 20 I = 1, N
 | |
|                CALL CLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
 | |
|                CALL CLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
 | |
|    20       CONTINUE
 | |
|             DIF( 1 ) = DSCALE*SQRT( DSUM )
 | |
|             DIF( 2 ) = DIF( 1 )
 | |
|          END IF
 | |
|          GO TO 70
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constant
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'S' )
 | |
| *
 | |
| *     Collect the selected blocks at the top-left corner of (A, B).
 | |
| *
 | |
|       KS = 0
 | |
|       DO 30 K = 1, N
 | |
|          SWAP = SELECT( K )
 | |
|          IF( SWAP ) THEN
 | |
|             KS = KS + 1
 | |
| *
 | |
| *           Swap the K-th block to position KS. Compute unitary Q
 | |
| *           and Z that will swap adjacent diagonal blocks in (A, B).
 | |
| *
 | |
|             IF( K.NE.KS )
 | |
|      $         CALL CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | |
|      $                      LDZ, K, KS, IERR )
 | |
| *
 | |
|             IF( IERR.GT.0 ) THEN
 | |
| *
 | |
| *              Swap is rejected: exit.
 | |
| *
 | |
|                INFO = 1
 | |
|                IF( WANTP ) THEN
 | |
|                   PL = ZERO
 | |
|                   PR = ZERO
 | |
|                END IF
 | |
|                IF( WANTD ) THEN
 | |
|                   DIF( 1 ) = ZERO
 | |
|                   DIF( 2 ) = ZERO
 | |
|                END IF
 | |
|                GO TO 70
 | |
|             END IF
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
|       IF( WANTP ) THEN
 | |
| *
 | |
| *        Solve generalized Sylvester equation for R and L:
 | |
| *                   A11 * R - L * A22 = A12
 | |
| *                   B11 * R - L * B22 = B12
 | |
| *
 | |
|          N1 = M
 | |
|          N2 = N - M
 | |
|          I = N1 + 1
 | |
|          CALL CLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
 | |
|          CALL CLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
 | |
|      $                N1 )
 | |
|          IJB = 0
 | |
|          CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
 | |
|      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
 | |
|      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
 | |
|      $                LWORK-2*N1*N2, IWORK, IERR )
 | |
| *
 | |
| *        Estimate the reciprocal of norms of "projections" onto
 | |
| *        left and right eigenspaces
 | |
| *
 | |
|          RDSCAL = ZERO
 | |
|          DSUM = ONE
 | |
|          CALL CLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
 | |
|          PL = RDSCAL*SQRT( DSUM )
 | |
|          IF( PL.EQ.ZERO ) THEN
 | |
|             PL = ONE
 | |
|          ELSE
 | |
|             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
 | |
|          END IF
 | |
|          RDSCAL = ZERO
 | |
|          DSUM = ONE
 | |
|          CALL CLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
 | |
|          PR = RDSCAL*SQRT( DSUM )
 | |
|          IF( PR.EQ.ZERO ) THEN
 | |
|             PR = ONE
 | |
|          ELSE
 | |
|             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( WANTD ) THEN
 | |
| *
 | |
| *        Compute estimates Difu and Difl.
 | |
| *
 | |
|          IF( WANTD1 ) THEN
 | |
|             N1 = M
 | |
|             N2 = N - M
 | |
|             I = N1 + 1
 | |
|             IJB = IDIFJB
 | |
| *
 | |
| *           Frobenius norm-based Difu estimate.
 | |
| *
 | |
|             CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
 | |
|      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
 | |
|      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
 | |
|      $                   LWORK-2*N1*N2, IWORK, IERR )
 | |
| *
 | |
| *           Frobenius norm-based Difl estimate.
 | |
| *
 | |
|             CALL CTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
 | |
|      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
 | |
|      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
 | |
|      $                   LWORK-2*N1*N2, IWORK, IERR )
 | |
|          ELSE
 | |
| *
 | |
| *           Compute 1-norm-based estimates of Difu and Difl using
 | |
| *           reversed communication with CLACN2. In each step a
 | |
| *           generalized Sylvester equation or a transposed variant
 | |
| *           is solved.
 | |
| *
 | |
|             KASE = 0
 | |
|             N1 = M
 | |
|             N2 = N - M
 | |
|             I = N1 + 1
 | |
|             IJB = 0
 | |
|             MN2 = 2*N1*N2
 | |
| *
 | |
| *           1-norm-based estimate of Difu.
 | |
| *
 | |
|    40       CONTINUE
 | |
|             CALL CLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
 | |
|      $                   ISAVE )
 | |
|             IF( KASE.NE.0 ) THEN
 | |
|                IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *                 Solve generalized Sylvester equation
 | |
| *
 | |
|                   CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
 | |
|      $                         WORK, N1, B, LDB, B( I, I ), LDB,
 | |
|      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
 | |
|      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                ELSE
 | |
| *
 | |
| *                 Solve the transposed variant.
 | |
| *
 | |
|                   CALL CTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
 | |
|      $                         WORK, N1, B, LDB, B( I, I ), LDB,
 | |
|      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
 | |
|      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                END IF
 | |
|                GO TO 40
 | |
|             END IF
 | |
|             DIF( 1 ) = DSCALE / DIF( 1 )
 | |
| *
 | |
| *           1-norm-based estimate of Difl.
 | |
| *
 | |
|    50       CONTINUE
 | |
|             CALL CLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
 | |
|      $                   ISAVE )
 | |
|             IF( KASE.NE.0 ) THEN
 | |
|                IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *                 Solve generalized Sylvester equation
 | |
| *
 | |
|                   CALL CTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
 | |
|      $                         WORK, N2, B( I, I ), LDB, B, LDB,
 | |
|      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
 | |
|      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                ELSE
 | |
| *
 | |
| *                 Solve the transposed variant.
 | |
| *
 | |
|                   CALL CTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
 | |
|      $                         WORK, N2, B, LDB, B( I, I ), LDB,
 | |
|      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
 | |
|      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
 | |
|      $                         IERR )
 | |
|                END IF
 | |
|                GO TO 50
 | |
|             END IF
 | |
|             DIF( 2 ) = DSCALE / DIF( 2 )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     If B(K,K) is complex, make it real and positive (normalization
 | |
| *     of the generalized Schur form) and Store the generalized
 | |
| *     eigenvalues of reordered pair (A, B)
 | |
| *
 | |
|       DO 60 K = 1, N
 | |
|          DSCALE = ABS( B( K, K ) )
 | |
|          IF( DSCALE.GT.SAFMIN ) THEN
 | |
|             TEMP1 = CONJG( B( K, K ) / DSCALE )
 | |
|             TEMP2 = B( K, K ) / DSCALE
 | |
|             B( K, K ) = DSCALE
 | |
|             CALL CSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
 | |
|             CALL CSCAL( N-K+1, TEMP1, A( K, K ), LDA )
 | |
|             IF( WANTQ )
 | |
|      $         CALL CSCAL( N, TEMP2, Q( 1, K ), 1 )
 | |
|          ELSE
 | |
|             B( K, K ) = CMPLX( ZERO, ZERO )
 | |
|          END IF
 | |
| *
 | |
|          ALPHA( K ) = A( K, K )
 | |
|          BETA( K ) = B( K, K )
 | |
| *
 | |
|    60 CONTINUE
 | |
| *
 | |
|    70 CONTINUE
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTGSEN
 | |
| *
 | |
|       END
 |