371 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTGEX2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgex2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgex2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgex2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | |
| *                          LDZ, J1, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            WANTQ, WANTZ
 | |
| *       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
 | |
| *> in an upper triangular matrix pair (A, B) by an unitary equivalence
 | |
| *> transformation.
 | |
| *>
 | |
| *> (A, B) must be in generalized Schur canonical form, that is, A and
 | |
| *> B are both upper triangular.
 | |
| *>
 | |
| *> Optionally, the matrices Q and Z of generalized Schur vectors are
 | |
| *> updated.
 | |
| *>
 | |
| *>        Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
 | |
| *>        Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTQ
 | |
| *> \verbatim
 | |
| *>          WANTQ is LOGICAL
 | |
| *>          .TRUE. : update the left transformation matrix Q;
 | |
| *>          .FALSE.: do not update Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          .TRUE. : update the right transformation matrix Z;
 | |
| *>          .FALSE.: do not update Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the matrix A in the pair (A, B).
 | |
| *>          On exit, the updated matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the matrix B in the pair (A, B).
 | |
| *>          On exit, the updated matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ,N)
 | |
| *>          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
 | |
| *>          the updated matrix Q.
 | |
| *>          Not referenced if WANTQ = .FALSE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q. LDQ >= 1;
 | |
| *>          If WANTQ = .TRUE., LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ,N)
 | |
| *>          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
 | |
| *>          the updated matrix Z.
 | |
| *>          Not referenced if WANTZ = .FALSE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z. LDZ >= 1;
 | |
| *>          If WANTZ = .TRUE., LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] J1
 | |
| *> \verbatim
 | |
| *>          J1 is INTEGER
 | |
| *>          The index to the first block (A11, B11).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           =0:  Successful exit.
 | |
| *>           =1:  The transformed matrix pair (A, B) would be too far
 | |
| *>                from generalized Schur form; the problem is ill-
 | |
| *>                conditioned.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexGEauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *>  In the current code both weak and strong stability tests are
 | |
| *>  performed. The user can omit the strong stability test by changing
 | |
| *>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
 | |
| *>  details.
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | |
| *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | |
| *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | |
| *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | |
| *> \n
 | |
| *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | |
| *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | |
| *>      Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
 | |
| *>      Department of Computing Science, Umea University, S-901 87 Umea,
 | |
| *>      Sweden, 1994. Also as LAPACK Working Note 87. To appear in
 | |
| *>      Numerical Algorithms, 1996.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | |
|      $                   LDZ, J1, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            WANTQ, WANTZ
 | |
|       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
|       REAL               TWENTY
 | |
|       PARAMETER          ( TWENTY = 2.0E+1 )
 | |
|       INTEGER            LDST
 | |
|       PARAMETER          ( LDST = 2 )
 | |
|       LOGICAL            WANDS
 | |
|       PARAMETER          ( WANDS = .TRUE. )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            STRONG, WEAK
 | |
|       INTEGER            I, M
 | |
|       REAL               CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SUM,
 | |
|      $                   THRESHA, THRESHB
 | |
|       COMPLEX            CDUM, F, G, SQ, SZ
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       COMPLEX            S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLACPY, CLARTG, CLASSQ, CROT
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, MAX, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.1 )
 | |
|      $   RETURN
 | |
| *
 | |
|       M = LDST
 | |
|       WEAK = .FALSE.
 | |
|       STRONG = .FALSE.
 | |
| *
 | |
| *     Make a local copy of selected block in (A, B)
 | |
| *
 | |
|       CALL CLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
 | |
|       CALL CLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
 | |
| *
 | |
| *     Compute the threshold for testing the acceptance of swapping.
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' ) / EPS
 | |
|       SCALE = REAL( CZERO )
 | |
|       SUM = REAL( CONE )
 | |
|       CALL CLACPY( 'Full', M, M, S, LDST, WORK, M )
 | |
|       CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
 | |
|       CALL CLASSQ( M*M, WORK, 1, SCALE, SUM )
 | |
|       SA = SCALE*SQRT( SUM )
 | |
|       SCALE = DBLE( CZERO )
 | |
|       SUM = DBLE( CONE )
 | |
|       CALL CLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM )
 | |
|       SB = SCALE*SQRT( SUM )
 | |
| *
 | |
| *     THRES has been changed from
 | |
| *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
 | |
| *     to
 | |
| *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
 | |
| *     on 04/01/10.
 | |
| *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
 | |
| *     Jim Demmel and Guillaume Revy. See forum post 1783.
 | |
| *
 | |
|       THRESHA = MAX( TWENTY*EPS*SA, SMLNUM )
 | |
|       THRESHB = MAX( TWENTY*EPS*SB, SMLNUM )
 | |
| *
 | |
| *     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
 | |
| *     using Givens rotations and perform the swap tentatively.
 | |
| *
 | |
|       F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
 | |
|       G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
 | |
|       SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
 | |
|       SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
 | |
|       CALL CLARTG( G, F, CZ, SZ, CDUM )
 | |
|       SZ = -SZ
 | |
|       CALL CROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, CONJG( SZ ) )
 | |
|       CALL CROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, CONJG( SZ ) )
 | |
|       IF( SA.GE.SB ) THEN
 | |
|          CALL CLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
 | |
|       ELSE
 | |
|          CALL CLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
 | |
|       END IF
 | |
|       CALL CROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
 | |
|       CALL CROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
 | |
| *
 | |
| *     Weak stability test: |S21| <= O(EPS F-norm((A)))
 | |
| *                          and  |T21| <= O(EPS F-norm((B)))
 | |
| *
 | |
|       WEAK = ABS( S( 2, 1 ) ).LE.THRESHA .AND. 
 | |
|      $ ABS( T( 2, 1 ) ).LE.THRESHB
 | |
|       IF( .NOT.WEAK )
 | |
|      $   GO TO 20
 | |
| *
 | |
|       IF( WANDS ) THEN
 | |
| *
 | |
| *        Strong stability test:
 | |
| *           F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B)))
 | |
| *
 | |
|          CALL CLACPY( 'Full', M, M, S, LDST, WORK, M )
 | |
|          CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
 | |
|          CALL CROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -CONJG( SZ ) )
 | |
|          CALL CROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -CONJG( SZ ) )
 | |
|          CALL CROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
 | |
|          CALL CROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
 | |
|          DO 10 I = 1, 2
 | |
|             WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
 | |
|             WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
 | |
|             WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
 | |
|             WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
 | |
|    10    CONTINUE
 | |
|          SCALE = DBLE( CZERO )
 | |
|          SUM = DBLE( CONE )
 | |
|          CALL CLASSQ( M*M, WORK, 1, SCALE, SUM )
 | |
|          SA = SCALE*SQRT( SUM )
 | |
|          SCALE = DBLE( CZERO )
 | |
|          SUM = DBLE( CONE )
 | |
|          CALL CLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM )
 | |
|          SB = SCALE*SQRT( SUM )
 | |
|          STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
 | |
|          IF( .NOT.STRONG )
 | |
|      $      GO TO 20
 | |
|       END IF
 | |
| *
 | |
| *     If the swap is accepted ("weakly" and "strongly"), apply the
 | |
| *     equivalence transformations to the original matrix pair (A,B)
 | |
| *
 | |
|       CALL CROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ, CONJG( SZ ) )
 | |
|       CALL CROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ, CONJG( SZ ) )
 | |
|       CALL CROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
 | |
|       CALL CROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
 | |
| *
 | |
| *     Set  N1 by N2 (2,1) blocks to 0
 | |
| *
 | |
|       A( J1+1, J1 ) = CZERO
 | |
|       B( J1+1, J1 ) = CZERO
 | |
| *
 | |
| *     Accumulate transformations into Q and Z if requested.
 | |
| *
 | |
|       IF( WANTZ )
 | |
|      $   CALL CROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ, CONJG( SZ ) )
 | |
|       IF( WANTQ )
 | |
|      $   CALL CROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ, CONJG( SQ ) )
 | |
| *
 | |
| *     Exit with INFO = 0 if swap was successfully performed.
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     Exit with INFO = 1 if swap was rejected.
 | |
| *
 | |
|    20 CONTINUE
 | |
|       INFO = 1
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTGEX2
 | |
| *
 | |
|       END
 |