495 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			495 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTBRFS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTBRFS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctbrfs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctbrfs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctbrfs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
 | |
| *                          LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, TRANS, UPLO
 | |
| *       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               BERR( * ), FERR( * ), RWORK( * )
 | |
| *       COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
 | |
| *      $                   X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTBRFS provides error bounds and backward error estimates for the
 | |
| *> solution to a system of linear equations with a triangular band
 | |
| *> coefficient matrix.
 | |
| *>
 | |
| *> The solution matrix X must be computed by CTBTRS or some other
 | |
| *> means before entering this routine.  CTBRFS does not do iterative
 | |
| *> refinement because doing so cannot improve the backward error.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  A is upper triangular;
 | |
| *>          = 'L':  A is lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the form of the system of equations:
 | |
| *>          = 'N':  A * X = B     (No transpose)
 | |
| *>          = 'T':  A**T * X = B  (Transpose)
 | |
| *>          = 'C':  A**H * X = B  (Conjugate transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          = 'N':  A is non-unit triangular;
 | |
| *>          = 'U':  A is unit triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of superdiagonals or subdiagonals of the
 | |
| *>          triangular band matrix A.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices B and X.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX array, dimension (LDAB,N)
 | |
| *>          The upper or lower triangular band matrix A, stored in the
 | |
| *>          first kd+1 rows of the array. The j-th column of A is stored
 | |
| *>          in the j-th column of the array AB as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>          If DIAG = 'U', the diagonal elements of A are not referenced
 | |
| *>          and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          The right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (LDX,NRHS)
 | |
| *>          The solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is REAL array, dimension (NRHS)
 | |
| *>          The estimated forward error bound for each solution vector
 | |
| *>          X(j) (the j-th column of the solution matrix X).
 | |
| *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | |
| *>          is an estimated upper bound for the magnitude of the largest
 | |
| *>          element in (X(j) - XTRUE) divided by the magnitude of the
 | |
| *>          largest element in X(j).  The estimate is as reliable as
 | |
| *>          the estimate for RCOND, and is almost always a slight
 | |
| *>          overestimate of the true error.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is REAL array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector X(j) (i.e., the smallest relative change in
 | |
| *>          any element of A or B that makes X(j) an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
 | |
|      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, TRANS, UPLO
 | |
|       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               BERR( * ), FERR( * ), RWORK( * )
 | |
|       COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
 | |
|      $                   X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0 )
 | |
|       COMPLEX            ONE
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN, NOUNIT, UPPER
 | |
|       CHARACTER          TRANSN, TRANST
 | |
|       INTEGER            I, J, K, KASE, NZ
 | |
|       REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
 | |
|       COMPLEX            ZDUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CAXPY, CCOPY, CLACN2, CTBMV, CTBSV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, SLAMCH
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       NOUNIT = LSAME( DIAG, 'N' )
 | |
| *
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | |
|      $         LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( KD.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDAB.LT.KD+1 ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTBRFS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|          DO 10 J = 1, NRHS
 | |
|             FERR( J ) = ZERO
 | |
|             BERR( J ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
|          TRANSN = 'N'
 | |
|          TRANST = 'C'
 | |
|       ELSE
 | |
|          TRANSN = 'C'
 | |
|          TRANST = 'N'
 | |
|       END IF
 | |
| *
 | |
| *     NZ = maximum number of nonzero elements in each row of A, plus 1
 | |
| *
 | |
|       NZ = KD + 2
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       SAFE1 = NZ*SAFMIN
 | |
|       SAFE2 = SAFE1 / EPS
 | |
| *
 | |
| *     Do for each right hand side
 | |
| *
 | |
|       DO 250 J = 1, NRHS
 | |
| *
 | |
| *        Compute residual R = B - op(A) * X,
 | |
| *        where op(A) = A, A**T, or A**H, depending on TRANS.
 | |
| *
 | |
|          CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
 | |
|          CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
 | |
|          CALL CAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
 | |
| *
 | |
| *        Compute componentwise relative backward error from formula
 | |
| *
 | |
| *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
 | |
| *
 | |
| *        where abs(Z) is the componentwise absolute value of the matrix
 | |
| *        or vector Z.  If the i-th component of the denominator is less
 | |
| *        than SAFE2, then SAFE1 is added to the i-th components of the
 | |
| *        numerator and denominator before dividing.
 | |
| *
 | |
|          DO 20 I = 1, N
 | |
|             RWORK( I ) = CABS1( B( I, J ) )
 | |
|    20    CONTINUE
 | |
| *
 | |
|          IF( NOTRAN ) THEN
 | |
| *
 | |
| *           Compute abs(A)*abs(X) + abs(B).
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                IF( NOUNIT ) THEN
 | |
|                   DO 40 K = 1, N
 | |
|                      XK = CABS1( X( K, J ) )
 | |
|                      DO 30 I = MAX( 1, K-KD ), K
 | |
|                         RWORK( I ) = RWORK( I ) +
 | |
|      $                               CABS1( AB( KD+1+I-K, K ) )*XK
 | |
|    30                CONTINUE
 | |
|    40             CONTINUE
 | |
|                ELSE
 | |
|                   DO 60 K = 1, N
 | |
|                      XK = CABS1( X( K, J ) )
 | |
|                      DO 50 I = MAX( 1, K-KD ), K - 1
 | |
|                         RWORK( I ) = RWORK( I ) +
 | |
|      $                               CABS1( AB( KD+1+I-K, K ) )*XK
 | |
|    50                CONTINUE
 | |
|                      RWORK( K ) = RWORK( K ) + XK
 | |
|    60             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
|                IF( NOUNIT ) THEN
 | |
|                   DO 80 K = 1, N
 | |
|                      XK = CABS1( X( K, J ) )
 | |
|                      DO 70 I = K, MIN( N, K+KD )
 | |
|                         RWORK( I ) = RWORK( I ) +
 | |
|      $                               CABS1( AB( 1+I-K, K ) )*XK
 | |
|    70                CONTINUE
 | |
|    80             CONTINUE
 | |
|                ELSE
 | |
|                   DO 100 K = 1, N
 | |
|                      XK = CABS1( X( K, J ) )
 | |
|                      DO 90 I = K + 1, MIN( N, K+KD )
 | |
|                         RWORK( I ) = RWORK( I ) +
 | |
|      $                               CABS1( AB( 1+I-K, K ) )*XK
 | |
|    90                CONTINUE
 | |
|                      RWORK( K ) = RWORK( K ) + XK
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Compute abs(A**H)*abs(X) + abs(B).
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                IF( NOUNIT ) THEN
 | |
|                   DO 120 K = 1, N
 | |
|                      S = ZERO
 | |
|                      DO 110 I = MAX( 1, K-KD ), K
 | |
|                         S = S + CABS1( AB( KD+1+I-K, K ) )*
 | |
|      $                      CABS1( X( I, J ) )
 | |
|   110                CONTINUE
 | |
|                      RWORK( K ) = RWORK( K ) + S
 | |
|   120             CONTINUE
 | |
|                ELSE
 | |
|                   DO 140 K = 1, N
 | |
|                      S = CABS1( X( K, J ) )
 | |
|                      DO 130 I = MAX( 1, K-KD ), K - 1
 | |
|                         S = S + CABS1( AB( KD+1+I-K, K ) )*
 | |
|      $                      CABS1( X( I, J ) )
 | |
|   130                CONTINUE
 | |
|                      RWORK( K ) = RWORK( K ) + S
 | |
|   140             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
|                IF( NOUNIT ) THEN
 | |
|                   DO 160 K = 1, N
 | |
|                      S = ZERO
 | |
|                      DO 150 I = K, MIN( N, K+KD )
 | |
|                         S = S + CABS1( AB( 1+I-K, K ) )*
 | |
|      $                      CABS1( X( I, J ) )
 | |
|   150                CONTINUE
 | |
|                      RWORK( K ) = RWORK( K ) + S
 | |
|   160             CONTINUE
 | |
|                ELSE
 | |
|                   DO 180 K = 1, N
 | |
|                      S = CABS1( X( K, J ) )
 | |
|                      DO 170 I = K + 1, MIN( N, K+KD )
 | |
|                         S = S + CABS1( AB( 1+I-K, K ) )*
 | |
|      $                      CABS1( X( I, J ) )
 | |
|   170                CONTINUE
 | |
|                      RWORK( K ) = RWORK( K ) + S
 | |
|   180             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          S = ZERO
 | |
|          DO 190 I = 1, N
 | |
|             IF( RWORK( I ).GT.SAFE2 ) THEN
 | |
|                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
 | |
|             ELSE
 | |
|                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
 | |
|      $             ( RWORK( I )+SAFE1 ) )
 | |
|             END IF
 | |
|   190    CONTINUE
 | |
|          BERR( J ) = S
 | |
| *
 | |
| *        Bound error from formula
 | |
| *
 | |
| *        norm(X - XTRUE) / norm(X) .le. FERR =
 | |
| *        norm( abs(inv(op(A)))*
 | |
| *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
 | |
| *
 | |
| *        where
 | |
| *          norm(Z) is the magnitude of the largest component of Z
 | |
| *          inv(op(A)) is the inverse of op(A)
 | |
| *          abs(Z) is the componentwise absolute value of the matrix or
 | |
| *             vector Z
 | |
| *          NZ is the maximum number of nonzeros in any row of A, plus 1
 | |
| *          EPS is machine epsilon
 | |
| *
 | |
| *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
 | |
| *        is incremented by SAFE1 if the i-th component of
 | |
| *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
 | |
| *
 | |
| *        Use CLACN2 to estimate the infinity-norm of the matrix
 | |
| *           inv(op(A)) * diag(W),
 | |
| *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
 | |
| *
 | |
|          DO 200 I = 1, N
 | |
|             IF( RWORK( I ).GT.SAFE2 ) THEN
 | |
|                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
 | |
|             ELSE
 | |
|                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
 | |
|      $                      SAFE1
 | |
|             END IF
 | |
|   200    CONTINUE
 | |
| *
 | |
|          KASE = 0
 | |
|   210    CONTINUE
 | |
|          CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
 | |
|          IF( KASE.NE.0 ) THEN
 | |
|             IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *              Multiply by diag(W)*inv(op(A)**H).
 | |
| *
 | |
|                CALL CTBSV( UPLO, TRANST, DIAG, N, KD, AB, LDAB, WORK,
 | |
|      $                     1 )
 | |
|                DO 220 I = 1, N
 | |
|                   WORK( I ) = RWORK( I )*WORK( I )
 | |
|   220          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Multiply by inv(op(A))*diag(W).
 | |
| *
 | |
|                DO 230 I = 1, N
 | |
|                   WORK( I ) = RWORK( I )*WORK( I )
 | |
|   230          CONTINUE
 | |
|                CALL CTBSV( UPLO, TRANSN, DIAG, N, KD, AB, LDAB, WORK,
 | |
|      $                     1 )
 | |
|             END IF
 | |
|             GO TO 210
 | |
|          END IF
 | |
| *
 | |
| *        Normalize error.
 | |
| *
 | |
|          LSTRES = ZERO
 | |
|          DO 240 I = 1, N
 | |
|             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
 | |
|   240    CONTINUE
 | |
|          IF( LSTRES.NE.ZERO )
 | |
|      $      FERR( J ) = FERR( J ) / LSTRES
 | |
| *
 | |
|   250 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTBRFS
 | |
| *
 | |
|       END
 |