478 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			478 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSTEDC
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSTEDC + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstedc.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstedc.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstedc.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
 | |
| *                          LRWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          COMPZ
 | |
| *       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               D( * ), E( * ), RWORK( * )
 | |
| *       COMPLEX            WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSTEDC computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> symmetric tridiagonal matrix using the divide and conquer method.
 | |
| *> The eigenvectors of a full or band complex Hermitian matrix can also
 | |
| *> be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
 | |
| *> matrix to tridiagonal form.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only.
 | |
| *>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
 | |
| *>          = 'V':  Compute eigenvectors of original Hermitian matrix
 | |
| *>                  also.  On entry, Z contains the unitary matrix used
 | |
| *>                  to reduce the original matrix to tridiagonal form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          On entry, the diagonal elements of the tridiagonal matrix.
 | |
| *>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          On entry, the subdiagonal elements of the tridiagonal matrix.
 | |
| *>          On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ,N)
 | |
| *>          On entry, if COMPZ = 'V', then Z contains the unitary
 | |
| *>          matrix used in the reduction to tridiagonal form.
 | |
| *>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
 | |
| *>          orthonormal eigenvectors of the original Hermitian matrix,
 | |
| *>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
 | |
| *>          of the symmetric tridiagonal matrix.
 | |
| *>          If  COMPZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1.
 | |
| *>          If eigenvectors are desired, then LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
 | |
| *>          If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
 | |
| *>          Note that for COMPZ = 'V', then if N is less than or
 | |
| *>          equal to the minimum divide size, usually 25, then LWORK need
 | |
| *>          only be 1.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK, RWORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK, RWORK and IWORK arrays, and no error message
 | |
| *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (MAX(1,LRWORK))
 | |
| *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LRWORK
 | |
| *> \verbatim
 | |
| *>          LRWORK is INTEGER
 | |
| *>          The dimension of the array RWORK.
 | |
| *>          If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
 | |
| *>          If COMPZ = 'V' and N > 1, LRWORK must be at least
 | |
| *>                         1 + 3*N + 2*N*lg N + 4*N**2 ,
 | |
| *>                         where lg( N ) = smallest integer k such
 | |
| *>                         that 2**k >= N.
 | |
| *>          If COMPZ = 'I' and N > 1, LRWORK must be at least
 | |
| *>                         1 + 4*N + 2*N**2 .
 | |
| *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
 | |
| *>          equal to the minimum divide size, usually 25, then LRWORK
 | |
| *>          need only be max(1,2*(N-1)).
 | |
| *>
 | |
| *>          If LRWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK, RWORK
 | |
| *>          and IWORK arrays, returns these values as the first entries
 | |
| *>          of the WORK, RWORK and IWORK arrays, and no error message
 | |
| *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
 | |
| *>          If COMPZ = 'V' or N > 1,  LIWORK must be at least
 | |
| *>                                    6 + 6*N + 5*N*lg N.
 | |
| *>          If COMPZ = 'I' or N > 1,  LIWORK must be at least
 | |
| *>                                    3 + 5*N .
 | |
| *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
 | |
| *>          equal to the minimum divide size, usually 25, then LIWORK
 | |
| *>          need only be 1.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK, RWORK
 | |
| *>          and IWORK arrays, returns these values as the first entries
 | |
| *>          of the WORK, RWORK and IWORK arrays, and no error message
 | |
| *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  The algorithm failed to compute an eigenvalue while
 | |
| *>                working on the submatrix lying in rows and columns
 | |
| *>                INFO/(N+1) through mod(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
 | |
|      $                   LRWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPZ
 | |
|       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               D( * ), E( * ), RWORK( * )
 | |
|       COMPLEX            WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
 | |
|      $                   LRWMIN, LWMIN, M, SMLSIZ, START
 | |
|       REAL               EPS, ORGNRM, P, TINY
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH, SLANST
 | |
|       EXTERNAL           ILAENV, LSAME, SLAMCH, SLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, CLACPY, CLACRM, CLAED0, CSTEQR, CSWAP,
 | |
|      $                   SLASCL, SLASET, SSTEDC, SSTEQR, SSTERF
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, INT, LOG, MAX, MOD, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       IF( LSAME( COMPZ, 'N' ) ) THEN
 | |
|          ICOMPZ = 0
 | |
|       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | |
|          ICOMPZ = 1
 | |
|       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | |
|          ICOMPZ = 2
 | |
|       ELSE
 | |
|          ICOMPZ = -1
 | |
|       END IF
 | |
|       IF( ICOMPZ.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( LDZ.LT.1 ) .OR.
 | |
|      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *        Compute the workspace requirements
 | |
| *
 | |
|          SMLSIZ = ILAENV( 9, 'CSTEDC', ' ', 0, 0, 0, 0 )
 | |
|          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
 | |
|             LWMIN = 1
 | |
|             LIWMIN = 1
 | |
|             LRWMIN = 1
 | |
|          ELSE IF( N.LE.SMLSIZ ) THEN
 | |
|             LWMIN = 1
 | |
|             LIWMIN = 1
 | |
|             LRWMIN = 2*( N - 1 )
 | |
|          ELSE IF( ICOMPZ.EQ.1 ) THEN
 | |
|             LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
 | |
|             IF( 2**LGN.LT.N )
 | |
|      $         LGN = LGN + 1
 | |
|             IF( 2**LGN.LT.N )
 | |
|      $         LGN = LGN + 1
 | |
|             LWMIN = N*N
 | |
|             LRWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
 | |
|             LIWMIN = 6 + 6*N + 5*N*LGN
 | |
|          ELSE IF( ICOMPZ.EQ.2 ) THEN
 | |
|             LWMIN = 1
 | |
|             LRWMIN = 1 + 4*N + 2*N**2
 | |
|             LIWMIN = 3 + 5*N
 | |
|          END IF
 | |
|          WORK( 1 ) = LWMIN
 | |
|          RWORK( 1 ) = LRWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -8
 | |
|          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -10
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSTEDC', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ICOMPZ.NE.0 )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     If the following conditional clause is removed, then the routine
 | |
| *     will use the Divide and Conquer routine to compute only the
 | |
| *     eigenvalues, which requires (3N + 3N**2) real workspace and
 | |
| *     (2 + 5N + 2N lg(N)) integer workspace.
 | |
| *     Since on many architectures SSTERF is much faster than any other
 | |
| *     algorithm for finding eigenvalues only, it is used here
 | |
| *     as the default. If the conditional clause is removed, then
 | |
| *     information on the size of workspace needs to be changed.
 | |
| *
 | |
| *     If COMPZ = 'N', use SSTERF to compute the eigenvalues.
 | |
| *
 | |
|       IF( ICOMPZ.EQ.0 ) THEN
 | |
|          CALL SSTERF( N, D, E, INFO )
 | |
|          GO TO 70
 | |
|       END IF
 | |
| *
 | |
| *     If N is smaller than the minimum divide size (SMLSIZ+1), then
 | |
| *     solve the problem with another solver.
 | |
| *
 | |
|       IF( N.LE.SMLSIZ ) THEN
 | |
| *
 | |
|          CALL CSTEQR( COMPZ, N, D, E, Z, LDZ, RWORK, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        If COMPZ = 'I', we simply call SSTEDC instead.
 | |
| *
 | |
|          IF( ICOMPZ.EQ.2 ) THEN
 | |
|             CALL SLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
 | |
|             LL = N*N + 1
 | |
|             CALL SSTEDC( 'I', N, D, E, RWORK, N,
 | |
|      $                   RWORK( LL ), LRWORK-LL+1, IWORK, LIWORK, INFO )
 | |
|             DO 20 J = 1, N
 | |
|                DO 10 I = 1, N
 | |
|                   Z( I, J ) = RWORK( ( J-1 )*N+I )
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
|             GO TO 70
 | |
|          END IF
 | |
| *
 | |
| *        From now on, only option left to be handled is COMPZ = 'V',
 | |
| *        i.e. ICOMPZ = 1.
 | |
| *
 | |
| *        Scale.
 | |
| *
 | |
|          ORGNRM = SLANST( 'M', N, D, E )
 | |
|          IF( ORGNRM.EQ.ZERO )
 | |
|      $      GO TO 70
 | |
| *
 | |
|          EPS = SLAMCH( 'Epsilon' )
 | |
| *
 | |
|          START = 1
 | |
| *
 | |
| *        while ( START <= N )
 | |
| *
 | |
|    30    CONTINUE
 | |
|          IF( START.LE.N ) THEN
 | |
| *
 | |
| *           Let FINISH be the position of the next subdiagonal entry
 | |
| *           such that E( FINISH ) <= TINY or FINISH = N if no such
 | |
| *           subdiagonal exists.  The matrix identified by the elements
 | |
| *           between START and FINISH constitutes an independent
 | |
| *           sub-problem.
 | |
| *
 | |
|             FINISH = START
 | |
|    40       CONTINUE
 | |
|             IF( FINISH.LT.N ) THEN
 | |
|                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
 | |
|      $                    SQRT( ABS( D( FINISH+1 ) ) )
 | |
|                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
 | |
|                   FINISH = FINISH + 1
 | |
|                   GO TO 40
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           (Sub) Problem determined.  Compute its size and solve it.
 | |
| *
 | |
|             M = FINISH - START + 1
 | |
|             IF( M.GT.SMLSIZ ) THEN
 | |
| *
 | |
| *              Scale.
 | |
| *
 | |
|                ORGNRM = SLANST( 'M', M, D( START ), E( START ) )
 | |
|                CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
 | |
|      $                      INFO )
 | |
|                CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
 | |
|      $                      M-1, INFO )
 | |
| *
 | |
|                CALL CLAED0( N, M, D( START ), E( START ), Z( 1, START ),
 | |
|      $                      LDZ, WORK, N, RWORK, IWORK, INFO )
 | |
|                IF( INFO.GT.0 ) THEN
 | |
|                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
 | |
|      $                   MOD( INFO, ( M+1 ) ) + START - 1
 | |
|                   GO TO 70
 | |
|                END IF
 | |
| *
 | |
| *              Scale back.
 | |
| *
 | |
|                CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
 | |
|      $                      INFO )
 | |
| *
 | |
|             ELSE
 | |
|                CALL SSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
 | |
|      $                      RWORK( M*M+1 ), INFO )
 | |
|                CALL CLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
 | |
|      $                      RWORK( M*M+1 ) )
 | |
|                CALL CLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
 | |
|                IF( INFO.GT.0 ) THEN
 | |
|                   INFO = START*( N+1 ) + FINISH
 | |
|                   GO TO 70
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             START = FINISH + 1
 | |
|             GO TO 30
 | |
|          END IF
 | |
| *
 | |
| *        endwhile
 | |
| *
 | |
| *
 | |
| *        Use Selection Sort to minimize swaps of eigenvectors
 | |
| *
 | |
|          DO 60 II = 2, N
 | |
|            I = II - 1
 | |
|            K = I
 | |
|            P = D( I )
 | |
|            DO 50 J = II, N
 | |
|               IF( D( J ).LT.P ) THEN
 | |
|                  K = J
 | |
|                  P = D( J )
 | |
|               END IF
 | |
|    50      CONTINUE
 | |
|            IF( K.NE.I ) THEN
 | |
|               D( K ) = D( I )
 | |
|               D( I ) = P
 | |
|               CALL CSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
 | |
|            END IF
 | |
|    60    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|    70 CONTINUE
 | |
|       WORK( 1 ) = LWMIN
 | |
|       RWORK( 1 ) = LRWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSTEDC
 | |
| *
 | |
|       END
 |