338 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSPMV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cspmv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cspmv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cspmv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INCX, INCY, N
 | |
| *       COMPLEX            ALPHA, BETA
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            AP( * ), X( * ), Y( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSPMV  performs the matrix-vector operation
 | |
| *>
 | |
| *>    y := alpha*A*x + beta*y,
 | |
| *>
 | |
| *> where alpha and beta are scalars, x and y are n element vectors and
 | |
| *> A is an n by n symmetric matrix, supplied in packed form.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the upper or lower
 | |
| *>           triangular part of the matrix A is supplied in the packed
 | |
| *>           array AP as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   The upper triangular part of A is
 | |
| *>                                  supplied in AP.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   The lower triangular part of A is
 | |
| *>                                  supplied in AP.
 | |
| *>
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the order of the matrix A.
 | |
| *>           N must be at least zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is COMPLEX
 | |
| *>           On entry, ALPHA specifies the scalar alpha.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension at least
 | |
| *>           ( ( N*( N + 1 ) )/2 ).
 | |
| *>           Before entry, with UPLO = 'U' or 'u', the array AP must
 | |
| *>           contain the upper triangular part of the symmetric matrix
 | |
| *>           packed sequentially, column by column, so that AP( 1 )
 | |
| *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 | |
| *>           and a( 2, 2 ) respectively, and so on.
 | |
| *>           Before entry, with UPLO = 'L' or 'l', the array AP must
 | |
| *>           contain the lower triangular part of the symmetric matrix
 | |
| *>           packed sequentially, column by column, so that AP( 1 )
 | |
| *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 | |
| *>           and a( 3, 1 ) respectively, and so on.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension at least
 | |
| *>           ( 1 + ( N - 1 )*abs( INCX ) ).
 | |
| *>           Before entry, the incremented array X must contain the N-
 | |
| *>           element vector x.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX
 | |
| *> \verbatim
 | |
| *>          INCX is INTEGER
 | |
| *>           On entry, INCX specifies the increment for the elements of
 | |
| *>           X. INCX must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is COMPLEX
 | |
| *>           On entry, BETA specifies the scalar beta. When BETA is
 | |
| *>           supplied as zero then Y need not be set on input.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Y
 | |
| *> \verbatim
 | |
| *>          Y is COMPLEX array, dimension at least
 | |
| *>           ( 1 + ( N - 1 )*abs( INCY ) ).
 | |
| *>           Before entry, the incremented array Y must contain the n
 | |
| *>           element vector y. On exit, Y is overwritten by the updated
 | |
| *>           vector y.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCY
 | |
| *> \verbatim
 | |
| *>          INCY is INTEGER
 | |
| *>           On entry, INCY specifies the increment for the elements of
 | |
| *>           Y. INCY must not be zero.
 | |
| *>           Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INCX, INCY, N
 | |
|       COMPLEX            ALPHA, BETA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            AP( * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
|       COMPLEX            ZERO
 | |
|       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
 | |
|       COMPLEX            TEMP1, TEMP2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( INCX.EQ.0 ) THEN
 | |
|          INFO = 6
 | |
|       ELSE IF( INCY.EQ.0 ) THEN
 | |
|          INFO = 9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSPMV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set up the start points in  X  and  Y.
 | |
| *
 | |
|       IF( INCX.GT.0 ) THEN
 | |
|          KX = 1
 | |
|       ELSE
 | |
|          KX = 1 - ( N-1 )*INCX
 | |
|       END IF
 | |
|       IF( INCY.GT.0 ) THEN
 | |
|          KY = 1
 | |
|       ELSE
 | |
|          KY = 1 - ( N-1 )*INCY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of the array AP
 | |
| *     are accessed sequentially with one pass through AP.
 | |
| *
 | |
| *     First form  y := beta*y.
 | |
| *
 | |
|       IF( BETA.NE.ONE ) THEN
 | |
|          IF( INCY.EQ.1 ) THEN
 | |
|             IF( BETA.EQ.ZERO ) THEN
 | |
|                DO 10 I = 1, N
 | |
|                   Y( I ) = ZERO
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
|                DO 20 I = 1, N
 | |
|                   Y( I ) = BETA*Y( I )
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IY = KY
 | |
|             IF( BETA.EQ.ZERO ) THEN
 | |
|                DO 30 I = 1, N
 | |
|                   Y( IY ) = ZERO
 | |
|                   IY = IY + INCY
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 I = 1, N
 | |
|                   Y( IY ) = BETA*Y( IY )
 | |
|                   IY = IY + INCY
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( ALPHA.EQ.ZERO )
 | |
|      $   RETURN
 | |
|       KK = 1
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        Form  y  when AP contains the upper triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
 | |
|             DO 60 J = 1, N
 | |
|                TEMP1 = ALPHA*X( J )
 | |
|                TEMP2 = ZERO
 | |
|                K = KK
 | |
|                DO 50 I = 1, J - 1
 | |
|                   Y( I ) = Y( I ) + TEMP1*AP( K )
 | |
|                   TEMP2 = TEMP2 + AP( K )*X( I )
 | |
|                   K = K + 1
 | |
|    50          CONTINUE
 | |
|                Y( J ) = Y( J ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
 | |
|                KK = KK + J
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 80 J = 1, N
 | |
|                TEMP1 = ALPHA*X( JX )
 | |
|                TEMP2 = ZERO
 | |
|                IX = KX
 | |
|                IY = KY
 | |
|                DO 70 K = KK, KK + J - 2
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
 | |
|                   TEMP2 = TEMP2 + AP( K )*X( IX )
 | |
|                   IX = IX + INCX
 | |
|                   IY = IY + INCY
 | |
|    70          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
 | |
|                JX = JX + INCX
 | |
|                JY = JY + INCY
 | |
|                KK = KK + J
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  y  when AP contains the lower triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
 | |
|             DO 100 J = 1, N
 | |
|                TEMP1 = ALPHA*X( J )
 | |
|                TEMP2 = ZERO
 | |
|                Y( J ) = Y( J ) + TEMP1*AP( KK )
 | |
|                K = KK + 1
 | |
|                DO 90 I = J + 1, N
 | |
|                   Y( I ) = Y( I ) + TEMP1*AP( K )
 | |
|                   TEMP2 = TEMP2 + AP( K )*X( I )
 | |
|                   K = K + 1
 | |
|    90          CONTINUE
 | |
|                Y( J ) = Y( J ) + ALPHA*TEMP2
 | |
|                KK = KK + ( N-J+1 )
 | |
|   100       CONTINUE
 | |
|          ELSE
 | |
|             JX = KX
 | |
|             JY = KY
 | |
|             DO 120 J = 1, N
 | |
|                TEMP1 = ALPHA*X( JX )
 | |
|                TEMP2 = ZERO
 | |
|                Y( JY ) = Y( JY ) + TEMP1*AP( KK )
 | |
|                IX = JX
 | |
|                IY = JY
 | |
|                DO 110 K = KK + 1, KK + N - J
 | |
|                   IX = IX + INCX
 | |
|                   IY = IY + INCY
 | |
|                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
 | |
|                   TEMP2 = TEMP2 + AP( K )*X( IX )
 | |
|   110          CONTINUE
 | |
|                Y( JY ) = Y( JY ) + ALPHA*TEMP2
 | |
|                JX = JX + INCX
 | |
|                JY = JY + INCY
 | |
|                KK = KK + ( N-J+1 )
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSPMV
 | |
| *
 | |
|       END
 |