466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CPTRFS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CPTRFS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptrfs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptrfs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptrfs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
 | |
| *                          FERR, BERR, WORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDB, LDX, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               BERR( * ), D( * ), DF( * ), FERR( * ),
 | |
| *      $                   RWORK( * )
 | |
| *       COMPLEX            B( LDB, * ), E( * ), EF( * ), WORK( * ),
 | |
| *      $                   X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CPTRFS improves the computed solution to a system of linear
 | |
| *> equations when the coefficient matrix is Hermitian positive definite
 | |
| *> and tridiagonal, and provides error bounds and backward error
 | |
| *> estimates for the solution.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the superdiagonal or the subdiagonal of the
 | |
| *>          tridiagonal matrix A is stored and the form of the
 | |
| *>          factorization:
 | |
| *>          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
 | |
| *>          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
 | |
| *>          (The two forms are equivalent if A is real.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The n real diagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) off-diagonal elements of the tridiagonal matrix A
 | |
| *>          (see UPLO).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DF
 | |
| *> \verbatim
 | |
| *>          DF is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the diagonal matrix D from
 | |
| *>          the factorization computed by CPTTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EF
 | |
| *> \verbatim
 | |
| *>          EF is COMPLEX array, dimension (N-1)
 | |
| *>          The (n-1) off-diagonal elements of the unit bidiagonal
 | |
| *>          factor U or L from the factorization computed by CPTTRF
 | |
| *>          (see UPLO).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          The right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is COMPLEX array, dimension (LDX,NRHS)
 | |
| *>          On entry, the solution matrix X, as computed by CPTTRS.
 | |
| *>          On exit, the improved solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is REAL array, dimension (NRHS)
 | |
| *>          The forward error bound for each solution vector
 | |
| *>          X(j) (the j-th column of the solution matrix X).
 | |
| *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | |
| *>          is an estimated upper bound for the magnitude of the largest
 | |
| *>          element in (X(j) - XTRUE) divided by the magnitude of the
 | |
| *>          largest element in X(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is REAL array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector X(j) (i.e., the smallest relative change in
 | |
| *>          any element of A or B that makes X(j) an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  ITMAX is the maximum number of steps of iterative refinement.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexPTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
 | |
|      $                   FERR, BERR, WORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDB, LDX, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               BERR( * ), D( * ), DF( * ), FERR( * ),
 | |
|      $                   RWORK( * )
 | |
|       COMPLEX            B( LDB, * ), E( * ), EF( * ), WORK( * ),
 | |
|      $                   X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            ITMAX
 | |
|       PARAMETER          ( ITMAX = 5 )
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0 )
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
|       REAL               TWO
 | |
|       PARAMETER          ( TWO = 2.0E+0 )
 | |
|       REAL               THREE
 | |
|       PARAMETER          ( THREE = 3.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            COUNT, I, IX, J, NZ
 | |
|       REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
 | |
|       COMPLEX            BI, CX, DX, EX, ZDUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, ISAMAX, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CAXPY, CPTTRS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CPTRFS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|          DO 10 J = 1, NRHS
 | |
|             FERR( J ) = ZERO
 | |
|             BERR( J ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     NZ = maximum number of nonzero elements in each row of A, plus 1
 | |
| *
 | |
|       NZ = 4
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       SAFE1 = NZ*SAFMIN
 | |
|       SAFE2 = SAFE1 / EPS
 | |
| *
 | |
| *     Do for each right hand side
 | |
| *
 | |
|       DO 100 J = 1, NRHS
 | |
| *
 | |
|          COUNT = 1
 | |
|          LSTRES = THREE
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Loop until stopping criterion is satisfied.
 | |
| *
 | |
| *        Compute residual R = B - A * X.  Also compute
 | |
| *        abs(A)*abs(x) + abs(b) for use in the backward error bound.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             IF( N.EQ.1 ) THEN
 | |
|                BI = B( 1, J )
 | |
|                DX = D( 1 )*X( 1, J )
 | |
|                WORK( 1 ) = BI - DX
 | |
|                RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
 | |
|             ELSE
 | |
|                BI = B( 1, J )
 | |
|                DX = D( 1 )*X( 1, J )
 | |
|                EX = E( 1 )*X( 2, J )
 | |
|                WORK( 1 ) = BI - DX - EX
 | |
|                RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
 | |
|      $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
 | |
|                DO 30 I = 2, N - 1
 | |
|                   BI = B( I, J )
 | |
|                   CX = CONJG( E( I-1 ) )*X( I-1, J )
 | |
|                   DX = D( I )*X( I, J )
 | |
|                   EX = E( I )*X( I+1, J )
 | |
|                   WORK( I ) = BI - CX - DX - EX
 | |
|                   RWORK( I ) = CABS1( BI ) +
 | |
|      $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
 | |
|      $                         CABS1( DX ) + CABS1( E( I ) )*
 | |
|      $                         CABS1( X( I+1, J ) )
 | |
|    30          CONTINUE
 | |
|                BI = B( N, J )
 | |
|                CX = CONJG( E( N-1 ) )*X( N-1, J )
 | |
|                DX = D( N )*X( N, J )
 | |
|                WORK( N ) = BI - CX - DX
 | |
|                RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
 | |
|      $                      CABS1( X( N-1, J ) ) + CABS1( DX )
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( N.EQ.1 ) THEN
 | |
|                BI = B( 1, J )
 | |
|                DX = D( 1 )*X( 1, J )
 | |
|                WORK( 1 ) = BI - DX
 | |
|                RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
 | |
|             ELSE
 | |
|                BI = B( 1, J )
 | |
|                DX = D( 1 )*X( 1, J )
 | |
|                EX = CONJG( E( 1 ) )*X( 2, J )
 | |
|                WORK( 1 ) = BI - DX - EX
 | |
|                RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
 | |
|      $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
 | |
|                DO 40 I = 2, N - 1
 | |
|                   BI = B( I, J )
 | |
|                   CX = E( I-1 )*X( I-1, J )
 | |
|                   DX = D( I )*X( I, J )
 | |
|                   EX = CONJG( E( I ) )*X( I+1, J )
 | |
|                   WORK( I ) = BI - CX - DX - EX
 | |
|                   RWORK( I ) = CABS1( BI ) +
 | |
|      $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
 | |
|      $                         CABS1( DX ) + CABS1( E( I ) )*
 | |
|      $                         CABS1( X( I+1, J ) )
 | |
|    40          CONTINUE
 | |
|                BI = B( N, J )
 | |
|                CX = E( N-1 )*X( N-1, J )
 | |
|                DX = D( N )*X( N, J )
 | |
|                WORK( N ) = BI - CX - DX
 | |
|                RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
 | |
|      $                      CABS1( X( N-1, J ) ) + CABS1( DX )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Compute componentwise relative backward error from formula
 | |
| *
 | |
| *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
 | |
| *
 | |
| *        where abs(Z) is the componentwise absolute value of the matrix
 | |
| *        or vector Z.  If the i-th component of the denominator is less
 | |
| *        than SAFE2, then SAFE1 is added to the i-th components of the
 | |
| *        numerator and denominator before dividing.
 | |
| *
 | |
|          S = ZERO
 | |
|          DO 50 I = 1, N
 | |
|             IF( RWORK( I ).GT.SAFE2 ) THEN
 | |
|                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
 | |
|             ELSE
 | |
|                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
 | |
|      $             ( RWORK( I )+SAFE1 ) )
 | |
|             END IF
 | |
|    50    CONTINUE
 | |
|          BERR( J ) = S
 | |
| *
 | |
| *        Test stopping criterion. Continue iterating if
 | |
| *           1) The residual BERR(J) is larger than machine epsilon, and
 | |
| *           2) BERR(J) decreased by at least a factor of 2 during the
 | |
| *              last iteration, and
 | |
| *           3) At most ITMAX iterations tried.
 | |
| *
 | |
|          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
 | |
|      $       COUNT.LE.ITMAX ) THEN
 | |
| *
 | |
| *           Update solution and try again.
 | |
| *
 | |
|             CALL CPTTRS( UPLO, N, 1, DF, EF, WORK, N, INFO )
 | |
|             CALL CAXPY( N, CMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
 | |
|             LSTRES = BERR( J )
 | |
|             COUNT = COUNT + 1
 | |
|             GO TO 20
 | |
|          END IF
 | |
| *
 | |
| *        Bound error from formula
 | |
| *
 | |
| *        norm(X - XTRUE) / norm(X) .le. FERR =
 | |
| *        norm( abs(inv(A))*
 | |
| *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
 | |
| *
 | |
| *        where
 | |
| *          norm(Z) is the magnitude of the largest component of Z
 | |
| *          inv(A) is the inverse of A
 | |
| *          abs(Z) is the componentwise absolute value of the matrix or
 | |
| *             vector Z
 | |
| *          NZ is the maximum number of nonzeros in any row of A, plus 1
 | |
| *          EPS is machine epsilon
 | |
| *
 | |
| *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
 | |
| *        is incremented by SAFE1 if the i-th component of
 | |
| *        abs(A)*abs(X) + abs(B) is less than SAFE2.
 | |
| *
 | |
|          DO 60 I = 1, N
 | |
|             IF( RWORK( I ).GT.SAFE2 ) THEN
 | |
|                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
 | |
|             ELSE
 | |
|                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
 | |
|      $                      SAFE1
 | |
|             END IF
 | |
|    60    CONTINUE
 | |
|          IX = ISAMAX( N, RWORK, 1 )
 | |
|          FERR( J ) = RWORK( IX )
 | |
| *
 | |
| *        Estimate the norm of inv(A).
 | |
| *
 | |
| *        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
 | |
| *
 | |
| *           m(i,j) =  abs(A(i,j)), i = j,
 | |
| *           m(i,j) = -abs(A(i,j)), i .ne. j,
 | |
| *
 | |
| *        and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**H.
 | |
| *
 | |
| *        Solve M(L) * x = e.
 | |
| *
 | |
|          RWORK( 1 ) = ONE
 | |
|          DO 70 I = 2, N
 | |
|             RWORK( I ) = ONE + RWORK( I-1 )*ABS( EF( I-1 ) )
 | |
|    70    CONTINUE
 | |
| *
 | |
| *        Solve D * M(L)**H * x = b.
 | |
| *
 | |
|          RWORK( N ) = RWORK( N ) / DF( N )
 | |
|          DO 80 I = N - 1, 1, -1
 | |
|             RWORK( I ) = RWORK( I ) / DF( I ) +
 | |
|      $                   RWORK( I+1 )*ABS( EF( I ) )
 | |
|    80    CONTINUE
 | |
| *
 | |
| *        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
 | |
| *
 | |
|          IX = ISAMAX( N, RWORK, 1 )
 | |
|          FERR( J ) = FERR( J )*ABS( RWORK( IX ) )
 | |
| *
 | |
| *        Normalize error.
 | |
| *
 | |
|          LSTRES = ZERO
 | |
|          DO 90 I = 1, N
 | |
|             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
 | |
|    90    CONTINUE
 | |
|          IF( LSTRES.NE.ZERO )
 | |
|      $      FERR( J ) = FERR( J ) / LSTRES
 | |
| *
 | |
|   100 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CPTRFS
 | |
| *
 | |
|       END
 |